1
|
Niu J, Xu M, Zong N, Sun J, Zhao L, Hui W. Ascorbic acid releases dormancy and promotes germination by an integrated regulation of abscisic acid and gibberellin in Pyrus betulifolia seeds. PHYSIOLOGIA PLANTARUM 2024; 176:e14271. [PMID: 38566130 DOI: 10.1111/ppl.14271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Revised: 02/28/2024] [Accepted: 03/08/2024] [Indexed: 04/04/2024]
Abstract
Seed dormancy is an important life history state in which intact viable seeds delay or prevent germination under suitable conditions. Ascorbic acid (AsA) acts as a small molecule antioxidant, and breaking seed dormancy and promoting subsequent growth are among its numerous functions. In this study, a germination test using Pyrus betulifolia seeds treated with exogenous AsA or AsA synthesis inhibitor lycorine (Lyc) and water absorption was conducted. The results indicated that AsA released dormancy and increased germination and 20 mmol L-1 AsA promoted cell division, whereas Lyc reduced germination. Seed germination showed typical three phases of water absorption; and seeds at five key time points were sampled for transcriptome analysis. It revealed that multiple pathways were involved in breaking dormancy and promoting germination through transcriptome data, and 12 differentially expressed genes (DEGs) related to the metabolism and signal transduction of abscisic acid (ABA) and gibberellins (GA) were verified by subsequent RT-qPCR. For metabolites, exogenous AsA increased endogenous AsA and GA3 but reduced ABA and the ABA/GA3 ratio. In addition, three genes regulating ABA synthesis were downregulated by AsA, while five genes mediating ABA degradation were upregulated. Taken together, AsA regulates the pathways associated with ABA and GA synthesis, catalysis, and signal transduction, with subsequent reduction in ABA and increase in GA and further the balance of ABA/GA, ultimately releasing dormancy and promoting germination.
Collapse
Affiliation(s)
- Junpeng Niu
- College of Life Sciences, Shaanxi Normal University, China
- College of Grassland Agriculture, Northwest A&F University, Yangling, China
| | - Mingzhen Xu
- College of Life Sciences, Shaanxi Normal University, China
| | - Na Zong
- College of Life Sciences, Shaanxi Normal University, China
| | - Jia Sun
- College of Life Sciences, Shaanxi Normal University, China
| | - Lei Zhao
- College of Life Sciences, Shaanxi Normal University, China
| | - Wei Hui
- College of Life Sciences, Shaanxi Normal University, China
| |
Collapse
|
2
|
Wang X, Jin B, Yan W, Wang J, Xu J, Cai C, Qi X, Xu Q, Yang X, Xu X, Chen X. Cucumber abscisic acid 8'-hydroxylase Csyf2 regulates yellow flesh by modulating carotenoid biosynthesis. PLANT PHYSIOLOGY 2023; 193:1001-1015. [PMID: 37394925 DOI: 10.1093/plphys/kiad383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/13/2023] [Accepted: 04/24/2023] [Indexed: 07/04/2023]
Abstract
Cucumber (Cucumis sativus L.) flesh is typically colorless or pale green. Flesh with yellow or orange pigment, determined mainly by carotenoid content and composition, is mostly found in semi-wild Xishuangbanna cucumber, which has a very narrow genetic background. Here, we identified a spontaneous cucumber mutant with yellow flesh (yf-343), which accumulated more β-cryptoxanthin and less lutein than regular cultivated European glasshouse-type cucumbers. Genetic analysis revealed that the yellow flesh phenotype was controlled by a single recessive gene. Through fine mapping and gene sequencing, we identified the candidate gene C. sativus yellow flesh 2 (Csyf2), encoding an abscisic acid (ABA) 8'-hydroxylase. Overexpression and RNAi-silencing of Csyf2 in cucumber hairy roots produced lower and higher ABA contents than in non-transgenic controls, respectively. Further, RNA-seq analysis suggested that genes related to ABA signal transduction were differentially expressed in fruit flesh between yf-343 and its wild type, BY, with white flesh. The carotenoid biosynthesis pathway was specifically enriched in fruit flesh at 30 days after pollination when yf-343 fruit flesh turns yellow. Our findings highlight a promising target for gene editing to increase carotenoid content, expanding our genetic resources for pigmented cucumber flesh breeding for improving the nutritional quality of cucumber.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Boyan Jin
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Wenjing Yan
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jiaxi Wang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Jun Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Congxi Cai
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaohua Qi
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Qiang Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xiaodong Yang
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
| | - Xuewen Xu
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Vegetable Crops, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuehao Chen
- Department of Horticulture, School of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
3
|
Lu M, Zhou J, Jiang S, Zeng Y, Li C, Tan X. The fasciclin-like arabinogalactan proteins of Camellia oil tree are involved in pollen tube growth. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111518. [PMID: 36309250 DOI: 10.1016/j.plantsci.2022.111518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/12/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Fasciclin-like arabinogalactan proteins (FLAs) are a class of highly glycosylated glycoproteins that perform crucial functions in plant growth and development. This study was carried out to further explore their roles in pollen tube growth. The results showed that seven members (CoFLA1/2/3/4/7/8/17) of the CoFLAs family were identified by sequence characteristics, and they all possessed the fasciclin 1 (FAS1) domain and H1 and H2 conserved domains. They were all located on the plasma membranes of tobacco epidermal cells, and the GPI-anchor sequences of CoFLA1/2/3/4 determined the membrane localization. In flower tissues, CoFLA2 and CoFLA8 were not expressed in the pollen tube but were expressed in the unpollinated style and ovary; the others were all expressed in the pollen tube. In the pollination-compatible style and ovary, they exhibited different expression patterns. Furthermore, all CoFLAs promoted pollen germination in vitro, while only CoFLA7 significantly promoted pollen tube elongation, and the expression of CoFLA1/3/4/7/17 in pollen tubes was regulated by CoFLA proteins. The ABA and ABA synthetic inhibitor (sodium tungstate, ST) both inhibited pollen tube elongation; however, only ST downregulated the expression of CoFLA1/7/17 and upregulated the expression of CoFLA4. Taken together, these results demonstrate that CoFLAs may be significant in pollen tube growth in C. oleifera and that some CoFLAs may participate in the regulation of ABA signaling.
Collapse
Affiliation(s)
- Mengqi Lu
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Junqin Zhou
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Sisi Jiang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Yanling Zeng
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Chang Li
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology, Changsha, Hunan, China; Academy of Camellia Oil Tree, Central South University of Forestry and Technology, Changsha, Hunan, China.
| |
Collapse
|
4
|
Integrated Metabolomic and Transcriptomic Analyses Reveal the Basis for Carotenoid Biosynthesis in Sweet Potato (Ipomoea batatas (L.) Lam.) Storage Roots. Metabolites 2022; 12:metabo12111010. [DOI: 10.3390/metabo12111010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022] Open
Abstract
Carotenoids are important compounds of quality and coloration within sweet potato storage roots, but the mechanisms that govern the accumulation of these carotenoids remain poorly understood. In this study, metabolomic and transcriptomic analyses of carotenoids were performed using young storage roots (S2) and old storage roots (S4) from white-fleshed (variety S19) and yellow-fleshed (variety BS) sweet potato types. S19 storage roots exhibited significantly lower total carotenoid levels relative to BS storage roots, and different numbers of carotenoid types were detected in the BS-S2, BS-S4, S19-S2, and S19-S4 samples. β-cryptoxanthin was identified as a potential key driver of differences in root coloration between the S19 and BS types. Combined transcriptomic and metabolomic analyses revealed significant co-annotation of the carotenoid and abscisic acid (ABA) metabolic pathways, PSY (phytoene synthase), CHYB (β-carotene 3-hydroxylase), ZEP (zeaxanthin epoxidase), NCED3 (9-cis-epoxycarotenoid dioxygenase 3), ABA2 (xanthoxin dehydrogenase), and CYP707A (abscisic acid 8’-hydroxylase) genes were found to be closely associated with carotenoid and ABA content in these sweet potato storage roots. The expression patterns of the transcription factors OFP and FAR1 were associated with the ABA content in these two sweet potato types. Together, these results provide a valuable foundation for understanding the mechanisms governing carotenoid biosynthesis in storage roots, and offer a theoretical basis for sweet potato breeding and management.
Collapse
|
5
|
Rutley N, Harper JF, Miller G. Reproductive resilience: putting pollen grains in two baskets. TRENDS IN PLANT SCIENCE 2022; 27:237-246. [PMID: 34627662 DOI: 10.1016/j.tplants.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/25/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
To ensure reproductive success, flowering plants produce an excess of pollen to fertilize a limited number of ovules. Pollen grains mature into two distinct subpopulations - those that display high metabolic activity and elevated reactive oxygen species (ROS) levels immediately after hydration (high-ROS/active), and those that maintain an extended period of dormancy with low metabolic activity (low-ROS/inactive/arrested/dormant). We propose that the dormant pollen serves as a backup to provide a second chance for successful fertilization when the 'first wave' of pollen encounters an unpredictable growth condition such as heat stress. This model provides a framework for considering the role of dormancy in reproductive stress tolerance as well as strategies for mitigating pollen thermovulnerability to daytime and night-time warming that is associated with global climate change.
Collapse
Affiliation(s)
- Nicholas Rutley
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel
| | - Jeffery F Harper
- Department of Biochemistry and Molecular Biology, University of Nevada at Reno, NV 89557, USA
| | - Gad Miller
- The Mina and Everard Goodman Faculty of Life Sciences, Bar Ilan University, Ramat-Gan, 5290002, Israel.
| |
Collapse
|