1
|
Wang H, Cai X, Umer MJ, Xu Y, Hou Y, Zheng J, Liu F, Wang K, Chen M, Ma S, Yu J, Zhou Z. Genetic Analysis of Cotton Fiber Traits in Gossypium Hybrid Lines. PHYSIOLOGIA PLANTARUM 2024; 176:e14442. [PMID: 39030776 DOI: 10.1111/ppl.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/25/2024] [Indexed: 07/22/2024]
Abstract
Cotton plays a crucial role in the progress of the textile industry and the betterment of human life by providing natural fibers. In our study, we explored the genetic determinants of cotton architecture and fiber yield and quality by crossbreeding Gossypium hirsutum and Gossypium barbadense, creating a recombinant inbred line (RIL) population. Utilizing SNP markers, we constructed an extensive genetic map encompassing 7,730 markers over 2,784.2 cM. We appraised two architectural and seven fiber traits within six environments, identifying 58 QTLs, of which 49 demonstrated stability across these environments. These encompassed QTLs for traits such as lint percentage (LP), boll weight (BW), fiber strength (STRENGTH), seed index (SI), and micronaire (MIC), primarily located on chromosomes chr-A07, chr-D06, and chr-D07. Notably, chr-D07 houses a QTL region affecting SI, corroborated by multiple studies. Within this region, the genes BZIP043 and SEP2 were identified as pivotal, with SEP2 particularly showing augmented expression in developing ovules. These discoveries contribute significantly to marker-assisted selection, potentially elevating both the yield and quality of cotton fiber production. These findings provide valuable insights into marker-assisted breeding strategies, offering crucial information to enhance fiber yield and quality in cotton production.
Collapse
Affiliation(s)
- Heng Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Xiaoyan Cai
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Muhammad Jawad Umer
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yanchao Xu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Yuqing Hou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Jie Zheng
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Fang Liu
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572024, China/ National Nanfan Research Institute (Sanya), Chinese Academy of Agriculture Sciences, Sanya, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, China
- Henan International Joint Laboratory of Cotton Biology, Anyang, Henan, China
| | - Kunbo Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| | - Mengshan Chen
- Chinese Academy of Agricultural Science, Beijing, China
| | | | - Jingzhong Yu
- Standing Committee of the People's Congress of Jiangsu Province, Nanjing, China
| | - Zhongli Zhou
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization/Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan, China
| |
Collapse
|
2
|
Shrestha A, Shim J, Mangat PK, Dhaliwal LK, Sweeney M, Angeles-Shim RB. Genetic Analysis of an F 2 Population Derived from the Cotton Landrace Hopi Identified Novel Loci for Boll Glanding. Int J Mol Sci 2024; 25:7080. [PMID: 39000183 PMCID: PMC11241279 DOI: 10.3390/ijms25137080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/16/2024] Open
Abstract
Landraces are an important reservoir of genetic variation that can expand the narrow genetic base of cultivated cotton. In this study, quantitative trait loci (QTL) analysis was conducted using an F2 population developed from crosses between the landrace Hopi and inbred TM-1. A high-density genetic map spanning 2253.11 and 1932.21 cM for the A and D sub-genomes, respectively, with an average marker interval of 1.14 cM, was generated using the CottonSNP63K array. The linkage map showed a strong co-linearity with the physical map of cotton. A total of 21 QTLs were identified, controlling plant height (1), bract type (1), boll number (1), stem color (2), boll pitting (2), fuzz fiber development (2), boll shape (3), boll point (4), and boll glanding (5). In silico analysis of the novel QTLs for boll glanding identified a total of 13 candidate genes. Analysis of tissue-specific expression of the candidate genes suggests roles for the transcription factors bHLH1, MYB2, and ZF1 in gland formation. Comparative sequencing of open reading frames identified early stop codons in all three transcription factors in Hopi. Functional validation of these genes offers avenues to reduce glanding and, consequently, lower gossypol levels in cottonseeds without compromising the defense mechanisms of the plant against biotic stresses.
Collapse
Affiliation(s)
- Avinash Shrestha
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (J.S.); (P.K.M.); (L.K.D.)
| | - Junghyun Shim
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (J.S.); (P.K.M.); (L.K.D.)
| | - Puneet Kaur Mangat
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (J.S.); (P.K.M.); (L.K.D.)
| | - Lakhvir Kaur Dhaliwal
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (J.S.); (P.K.M.); (L.K.D.)
| | - Megan Sweeney
- BASF Corporation, 407 Davis Drive, Morrisville, NC 27560, USA;
| | - Rosalyn B. Angeles-Shim
- Department of Plant and Soil Science, Davis College of Agricultural Sciences and Natural Resources, Texas Tech University, Lubbock, TX 79409, USA; (A.S.); (J.S.); (P.K.M.); (L.K.D.)
| |
Collapse
|
3
|
Li X, Ma Q, Wang X, Zhong Y, Zhang Y, Zhang P, Du Y, Luo H, Chen Y, Li X, Li Y, He R, Zhou Y, Li Y, Cheng M, He J, Rong T, Tang Q. A teosinte-derived allele of ZmSC improves salt tolerance in maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1361422. [PMID: 38903442 PMCID: PMC11188391 DOI: 10.3389/fpls.2024.1361422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Maize, a salt-sensitive crop, frequently suffers severe yield losses due to soil salinization. Enhancing salt tolerance in maize is crucial for maintaining yield stability. To address this, we developed an introgression line (IL76) through introgressive hybridization between maize wild relatives Zea perennis, Tripsacum dactyloides, and inbred Zheng58, utilizing the tri-species hybrid MTP as a genetic bridge. Previously, genetic variation analysis identified a polymorphic marker on Zm00001eb244520 (designated as ZmSC), which encodes a vesicle-sorting protein described as a salt-tolerant protein in the NCBI database. To characterize the identified polymorphic marker, we employed gene cloning and homologous cloning techniques. Gene cloning analysis revealed a non-synonymous mutation at the 1847th base of ZmSCIL76 , where a guanine-to-cytosine substitution resulted in the mutation of serine to threonine at the 119th amino acid sequence (using ZmSCZ58 as the reference sequence). Moreover, homologous cloning demonstrated that the variation site derived from Z. perennis. Functional analyses showed that transgenic Arabidopsis lines overexpressing ZmSCZ58 exhibited significant reductions in leaf number, root length, and pod number, alongside suppression of the expression of genes in the SOS and CDPK pathways associated with Ca2+ signaling. Similarly, fission yeast strains expressing ZmSCZ58 displayed inhibited growth. In contrast, the ZmSCIL76 allele from Z. perennis alleviated these negative effects in both Arabidopsis and yeast, with the lines overexpressing ZmSCIL76 exhibiting significantly higher abscisic acid (ABA) content compared to those overexpressing ZmSCZ58 . Our findings suggest that ZmSC negatively regulates salt tolerance in maize by suppressing downstream gene expression associated with Ca2+ signaling in the CDPK and SOS pathways. The ZmSCIL76 allele from Z. perennis, however, can mitigate this negative regulatory effect. These results provide valuable insights and genetic resources for future maize salt tolerance breeding programs.
Collapse
Affiliation(s)
- Xiaofeng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qiangqiang Ma
- Pingliang Academy of Agricultural Sciences, Pingliang, China
| | - Xingyu Wang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yunfeng Zhong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yibo Zhang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ping Zhang
- Animal Feeding and Management Department, Research Base of Giant Panda Breeding, Chengdu, China
| | - Yiyang Du
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hanyu Luo
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yu Chen
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiangyuan Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yingzheng Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ruyu He
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yang Zhou
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Li
- School of Urban and Rural Planning and Construction, Mianyang Teachers’ College, Mianyang, China
| | - Mingjun Cheng
- College of Grassland Resources, Southwest Minzu University, Chengdu, China
| | - Jianmei He
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qilin Tang
- Maize Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
4
|
Yang L, Wang X, Zhao F, Zhang X, Li W, Huang J, Pei X, Ren X, Liu Y, He K, Zhang F, Ma X, Yang D. Roles of S-Adenosylmethionine and Its Derivatives in Salt Tolerance of Cotton. Int J Mol Sci 2023; 24:ijms24119517. [PMID: 37298464 DOI: 10.3390/ijms24119517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/19/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Salinity is a major abiotic stress that restricts cotton growth and affects fiber yield and quality. Although studies on salt tolerance have achieved great progress in cotton since the completion of cotton genome sequencing, knowledge about how cotton copes with salt stress is still scant. S-adenosylmethionine (SAM) plays important roles in many organelles with the help of the SAM transporter, and it is also a synthetic precursor for substances such as ethylene (ET), polyamines (PAs), betaine, and lignin, which often accumulate in plants in response to stresses. This review focused on the biosynthesis and signal transduction pathways of ET and PAs. The current progress of ET and PAs in regulating plant growth and development under salt stress has been summarized. Moreover, we verified the function of a cotton SAM transporter and suggested that it can regulate salt stress response in cotton. At last, an improved regulatory pathway of ET and PAs under salt stress in cotton is proposed for the breeding of salt-tolerant varieties.
Collapse
Affiliation(s)
- Li Yang
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xingxing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Fuyong Zhao
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Xianliang Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Wei Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Junsen Huang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiaoyu Pei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiang Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Yangai Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Kunlun He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Fei Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
- Western Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Changji 831100, China
| | - Daigang Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| |
Collapse
|
5
|
Overexpression of ZmSRG7 Improves Drought and Salt Tolerance in Maize (Zea mays L.). Int J Mol Sci 2022; 23:ijms232113349. [PMID: 36362140 PMCID: PMC9654355 DOI: 10.3390/ijms232113349] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/28/2022] [Accepted: 10/30/2022] [Indexed: 11/06/2022] Open
Abstract
Osmotic stress caused by drought and high salinity is the key factor limiting plant growth. However, its underlying molecular regulatory mechanism remains unclear. In this study, we found the stress-related gene Zm00001d019704 (ZmSRG7) based on transcriptome sequencing results previously obtained in the laboratory and determined its biological function in maize. We found that ZmSRG7 was significantly expressed in both roots and leaves under 10% PEG6000 or 150 mM NaCl. Subcellular localization showed that the gene was localized in the nucleus. The germination rate and root length of the ZmSRG7 overexpressing lines were significantly increased under drought or salt stress compared with the control. However, after drought stress, the survival rate and relative water content of maize were increased, while the water loss rate was slowed down. Under salt stress, the Na+ concentration and Na+: K+ ratio of maize was increased. In addition, the contents of antioxidant enzymes and proline in maize under drought or salt stress were higher than those in the control, while the contents of MDA, H2O2 and O2− were lower than those in the control. The results showed that the ZmSRG7 gene played its biological function by regulating the ROS signaling pathway. An interaction between ZmSRG7 and the Zmdhn1 protein was found using a yeast two-hybrid experiment. These results suggest that the ZmSRG7 gene can improve maize tolerance to drought or salt by regulating hydrogen peroxide homeostasis.
Collapse
|
6
|
Ashraf MF, Hou D, Hussain Q, Imran M, Pei J, Ali M, Shehzad A, Anwar M, Noman A, Waseem M, Lin X. Entailing the Next-Generation Sequencing and Metabolome for Sustainable Agriculture by Improving Plant Tolerance. Int J Mol Sci 2022; 23:651. [PMID: 35054836 PMCID: PMC8775971 DOI: 10.3390/ijms23020651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/23/2021] [Accepted: 12/29/2021] [Indexed: 02/07/2023] Open
Abstract
Crop production is a serious challenge to provide food for the 10 billion individuals forecasted to live across the globe in 2050. The scientists' emphasize establishing an equilibrium among diversity and quality of crops by enhancing yield to fulfill the increasing demand for food supply sustainably. The exploitation of genetic resources using genomics and metabolomics strategies can help generate resilient plants against stressors in the future. The innovation of the next-generation sequencing (NGS) strategies laid the foundation to unveil various plants' genetic potential and help us to understand the domestication process to unmask the genetic potential among wild-type plants to utilize for crop improvement. Nowadays, NGS is generating massive genomic resources using wild-type and domesticated plants grown under normal and harsh environments to explore the stress regulatory factors and determine the key metabolites. Improved food nutritional value is also the key to eradicating malnutrition problems around the globe, which could be attained by employing the knowledge gained through NGS and metabolomics to achieve suitability in crop yield. Advanced technologies can further enhance our understanding in defining the strategy to obtain a specific phenotype of a crop. Integration among bioinformatic tools and molecular techniques, such as marker-assisted, QTLs mapping, creation of reference genome, de novo genome assembly, pan- and/or super-pan-genomes, etc., will boost breeding programs. The current article provides sequential progress in NGS technologies, a broad application of NGS, enhancement of genetic manipulation resources, and understanding the crop response to stress by producing plant metabolites. The NGS and metabolomics utilization in generating stress-tolerant plants/crops without deteriorating a natural ecosystem is considered a sustainable way to improve agriculture production. This highlighted knowledge also provides useful research that explores the suitable resources for agriculture sustainability.
Collapse
Affiliation(s)
- Muhammad Furqan Ashraf
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Dan Hou
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Muhammad Imran
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Jialong Pei
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| | - Mohsin Ali
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Aamar Shehzad
- Maize Research Station, AARI, Faisalabad 38000, Pakistan;
| | - Muhammad Anwar
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518055, China;
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad 38000, Pakistan;
| | - Muhammad Waseem
- Colleges of Agriculture and Horticulture, South China Agricultural University, Guangzhou 510642, China; (M.I.); (M.W.)
| | - Xinchun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Lin’An, Hangzhou 311300, China; (M.F.A.); (D.H.); (Q.H.); (J.P.)
| |
Collapse
|
7
|
Finding Needles in a Haystack: Using Geo-References to Enhance the Selection and Utilization of Landraces in Breeding for Climate-Resilient Cultivars of Upland Cotton ( Gossypium hirsutum L.). PLANTS 2021; 10:plants10071300. [PMID: 34206949 PMCID: PMC8309191 DOI: 10.3390/plants10071300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/17/2021] [Accepted: 06/23/2021] [Indexed: 01/25/2023]
Abstract
The genetic uniformity of cultivated cotton as a consequence of domestication and modern breeding makes it extremely vulnerable to abiotic challenges brought about by major climate shifts. To sustain productivity amidst worsening agro-environments, future breeding objectives need to seriously consider introducing new genetic variation from diverse resources into the current germplasm base of cotton. Landraces are genetically heterogeneous, population complexes that have been primarily selected for their adaptability to specific localized or regional environments. This makes them an invaluable genetic resource of novel allelic diversity that can be exploited to enhance the resilience of crops to marginal environments. The utilization of cotton landraces in breeding programs are constrained by the phenology of the plant and the lack of phenotypic information that can facilitate efficient selection of potential donor parents for breeding. In this review, the genetic value of cotton landraces and the major challenges in their utilization in breeding are discussed. Two strategies namely Focused Identification of Germplasm Strategy and Environmental Association Analysis that have been developed to effectively screen large germplasm collections for accessions with adaptive traits using geo-reference-based, mathematical modelling are highlighted. The potential applications of both approaches in mining available cotton landrace collections are also presented.
Collapse
|