1
|
Rathore P, Shivashakarappa K, Ghimire N, Dumenyo K, Yadegari Z, Taheri A. Genome-Wide Association study for root system architecture traits in field soybean [Glycine max (L.) Merr.]. Sci Rep 2024; 14:25075. [PMID: 39443649 PMCID: PMC11500091 DOI: 10.1038/s41598-024-76515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024] Open
Abstract
Roots play a crucial role in plant development, serving to absorb water and nutrients from the soil while also providing structural stability. However, the impacts of global warming can impede root growth by altering soil conditions that hinder overall plant growth. To address this challenge, there is a need to screen and identify plant genotypes with superior Root System Architecture traits (RSA), that can be used for future breeding efforts in enhancing their resilience to these environmental changes. In this project, 500 mid to late-maturity soybean accessions were grown on blue blotting papers hydroponically with six replicates and assessed seven RSA traits. Genome-Wide Association Studies (GWAS) were carried out with root phenotypic data and SNP data from the SoySNP50K iSelect SNP BeadChip, using both the TASSEL 5.0 and FarmCPU techniques. A total of 26 significant SNP-trait correlations were discovered, with 11 SNPs on chromosome 13. After SNP selection, we identified 14 candidate genes within 100-kb regions flanking the SNPs, which are related to root architecture. Notably, Glyma.17G258700, which exhibited substantial differential expression in root tips and its Arabidopsis homolog, AT4G24190 (GRP94) is involved in the regulation of meristem size and organization. Other candidate genes includes Glyma.03G023000 and Glyma.13G273500 that are also play a key role in lateral root initiation and root meristem growth, respectively. These findings significantly contribute to the discovery of key genes associated with root system architecture, facilitating the breeding of resilient cultivars adaptable to changing climates.
Collapse
Affiliation(s)
- Pallavi Rathore
- College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37208, USA
| | - Kuber Shivashakarappa
- College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37208, USA
| | - Niraj Ghimire
- College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37208, USA
| | - Korsi Dumenyo
- College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37208, USA
| | - Zeinab Yadegari
- Department of Life and Physical Sciences, Fisk University, 1000 17th Ave N, Nashville, TN, 37208, USA
| | - Ali Taheri
- College of Agriculture, Tennessee State University, 3500 John A Merritt Blvd, Nashville, TN, 37208, USA.
| |
Collapse
|
2
|
Chandnani R, Qin T, Ye H, Hu H, Panjvani K, Tokizawa M, Macias JM, Medina AA, Bernardino K, Pradier PL, Banik P, Mooney A, V Magalhaes J, T Nguyen H, Kochian LV. Application of an Improved 2-Dimensional High-Throughput Soybean Root Phenotyping Platform to Identify Novel Genetic Variants Regulating Root Architecture Traits. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0097. [PMID: 37780968 PMCID: PMC10538525 DOI: 10.34133/plantphenomics.0097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 09/05/2023] [Indexed: 10/03/2023]
Abstract
Nutrient-efficient root system architecture (RSA) is becoming an important breeding objective for generating crop varieties with improved nutrient and water acquisition efficiency. Genetic variants shaping soybean RSA is key in improving nutrient and water acquisition. Here, we report on the use of an improved 2-dimensional high-throughput root phenotyping platform that minimizes background noise by imaging pouch-grown root systems submerged in water. We also developed a background image cleaning Python pipeline that computationally removes images of small pieces of debris and filter paper fibers, which can be erroneously quantified as root tips. This platform was used to phenotype root traits in 286 soybean lines genotyped with 5.4 million single-nucleotide polymorphisms. There was a substantially higher correlation in manually counted number of root tips with computationally quantified root tips (95% correlation), when the background was cleaned of nonroot materials compared to root images without the background corrected (79%). Improvements in our RSA phenotyping pipeline significantly reduced overestimation of the root traits influenced by the number of root tips. Genome-wide association studies conducted on the root phenotypic data and quantitative gene expression analysis of candidate genes resulted in the identification of 3 putative positive regulators of root system depth, total root length and surface area, and root system volume and surface area of thicker roots (DOF1-like zinc finger transcription factor, protein of unknown function, and C2H2 zinc finger protein). We also identified a putative negative regulator (gibberellin 20 oxidase 3) of the total number of lateral roots.
Collapse
Affiliation(s)
- Rahul Chandnani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- NRGene Canada, 110 Research Dr Suite 101, Saskatoon, SK, Canada
| | - Tongfei Qin
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Heng Ye
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
| | - Haifei Hu
- School of Biological Sciences, The University of Western Australia, Crawley, WA 6009, Australia
- Rice Research Institute, Guangdong Academy of Agricultural Sciences & Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China(Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs & Guangdong Key Laboratory of New Technology in Rice Breeding & Guangdong Rice Engineering Laboratory, Guangdong, China
| | - Karim Panjvani
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Mutsutomo Tokizawa
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Javier Mora Macias
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Alma Armenta Medina
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Pierre-Luc Pradier
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Pankaj Banik
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ashlyn Mooney
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, MO 65211, USA
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| | - Leon V Kochian
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
- Global Institute for Food Security, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Genome-Wide Association Studies of Seven Root Traits in Soybean ( Glycine max L.) Landraces. Int J Mol Sci 2023; 24:ijms24010873. [PMID: 36614316 PMCID: PMC9821504 DOI: 10.3390/ijms24010873] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 01/05/2023] Open
Abstract
Soybean [Glycine max (L.) Merr.], an important oilseed crop, is a low-cost source of protein and oil. In Southeast Asia and Africa, soybeans are widely cultivated for use as traditional food and feed and industrial purposes. Given the ongoing changes in global climate, developing crops that are resistant to climatic extremes and produce viable yields under predicted climatic conditions will be essential in the coming decades. To develop such crops, it will be necessary to gain a thorough understanding of the genetic basis of agronomic and plant root traits. As plant roots generally lie beneath the soil surface, detailed observations and phenotyping throughout plant development present several challenges, and thus the associated traits have tended to be ignored in genomics studies. In this study, we phenotyped 357 soybean landraces at the early vegetative (V2) growth stages and used a 180 K single-nucleotide polymorphism (SNP) soybean array in a genome-wide association study (GWAS) conducted to determine the phenotypic relationships among root traits, elucidate the genetic bases, and identify significant SNPs associated with root trait-controlling genomic regions/loci. A total of 112 significant SNP loci/regions were detected for seven root traits, and we identified 55 putative candidate genes considered to be the most promising. Our findings in this study indicate that a combined approach based on SNP array and GWAS analyses can be applied to unravel the genetic basis of complex root traits in soybean, and may provide an alternative high-resolution marker strategy to traditional bi-parental mapping. In addition, the identified SNPs, candidate genes, and diverse variations in the root traits of soybean landraces will serve as a valuable basis for further application in genetic studies and the breeding of climate-resilient soybeans characterized by improved root traits.
Collapse
|
4
|
Bui KT, Naruse T, Yoshida H, Toda Y, Omori Y, Tsuda M, Kaga A, Yamasaki Y, Tsujimoto H, Ichihashi Y, Hirai M, Fujiwara T, Iwata H, Matsuoka M, Takahashi H, Nakazono M. Effects of irrigation on root growth and development of soybean: A 3-year sandy field experiment. FRONTIERS IN PLANT SCIENCE 2022; 13:1047563. [PMID: 36589062 PMCID: PMC9795411 DOI: 10.3389/fpls.2022.1047563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Increasing the water use efficiency of crops is an important agricultural goal closely related to the root system -the primary plant organ for water and nutrient acquisition. In an attempt to evaluate the response of root growth and development of soybean to water supply levels, 200 genotypes were grown in a sandy field for 3 years under irrigated and non-irrigated conditions, and 14 root traits together with shoot fresh weight and plant height were investigated. Three-way ANOVA revealed a significant effect of treatments and years on growth of plants, accounting for more than 80% of the total variability. The response of roots to irrigation was consistent over the years as most root traits were improved by irrigation. However, the actual values varied between years because the growth of plants was largely affected by the field microclimatic conditions (i.e., temperature, sunshine duration, and precipitation). Therefore, the best linear unbiased prediction values for each trait were calculated using the original data. Principal component analysis showed that most traits contributed to principal component (PC) 1, whereas average diameter, the ratio of thin and medium thickness root length to total root length contributed to PC2. Subsequently, we focused on selecting genotypes that exhibited significant improvements in root traits under irrigation than under non-irrigated conditions using the increment (I-index) and relative increment (RI-index) indices calculated for all traits. Finally, we screened for genotypes with high stability and root growth over the 3 years using the multi-trait selection index (MTSI).Six genotypes namely, GmJMC130, GmWMC178, GmJMC092, GmJMC068, GmWMC075, and GmJMC081 from the top 10% of genotypes scoring MTSI less than the selection threshold of 7.04 and 4.11 under irrigated and non-irrigated conditions, respectively, were selected. The selected genotypes have great potential for breeding cultivars with improved water usage abilities, meeting the goal of water-saving agriculture.
Collapse
Affiliation(s)
- Khuynh The Bui
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- Faculty of Agronomy, Vietnam National University of Agriculture, Hanoi, Vietnam
| | - Toshiya Naruse
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Hideki Yoshida
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Yusuke Toda
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Ibaraki, Japan
| | - Yoshihiro Omori
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Mai Tsuda
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Yuji Yamasaki
- Arid Land Research Center, Tottori University, Tottori, Japan
| | | | | | - Masami Hirai
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- RIKEN Center for Sustainable Resource Science, Tsukuba, Japan
| | - Toru Fujiwara
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroyoshi Iwata
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Makoto Matsuoka
- Bioscience and Biotechnology Center, Nagoya University, Nagoya, Japan
| | - Hirokazu Takahashi
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
| | - Mikio Nakazono
- Graduate School of Bio-Agricultural Sciences, Nagoya University, Nagoya, Japan
- School of Plant Biology, The University of Western Australia, 35 Stirling Highway, Crawley, WA, Australia
| |
Collapse
|