1
|
Zhang X, Cheng L, Shang H, Chen Q, Lu M, Mu D, Li X, Meng X, Wu Y, Han X, Liu D, Xu Y. Research advances of coloring mechanism regulated by MicroRNAs in plants. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109036. [PMID: 39128404 DOI: 10.1016/j.plaphy.2024.109036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/27/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
In plants, microRNAs (miRNAs) are a class of important small RNAs involved in their growth and development, and play a very significant role in regulating their tissue coloring. In this paper, the mechanisms on miRNA regulation of plant coloring are mainly reviewed from three aspects: macroscopic physiological and molecular foundations related to tissue coloring, miRNA biosynthesis and function, and specific analysis of miRNA regulation studies on leaf color, flower color, fruit color, and other tissue color formation in plants. Furthermore, we also systematically summarize the miRNA regulatory mechanisms identified on pigments biosynthesis and color formation in plants, and the regulatory mechanisms of these miRNAs mentioned on the existing researches can be divided into four main categories: directly targeting the related transcription factors, directly targeting the related structural genes, directly targeting the related long noncoding RNAs (LncRNAs) and miRNA-mediated production of trans-acting small interfering RNAs (ta-siRNAs). Together, these research results aim to provide a theoretical reference for the in-depth study of plant coloring mechanism and molecular breeding study of related plants in the future.
Collapse
Affiliation(s)
- Xinpeng Zhang
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Lizhen Cheng
- Qilu Pharmaceutical Co., Ltd., Jinan, 250101, China
| | - Hong Shang
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Qiang Chen
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Mei Lu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Deyu Mu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiaoyan Li
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xiang Meng
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Yawei Wu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China
| | - Xin Han
- Kyungpook National University, Daegu, 41566, South Korea
| | - Daliang Liu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China.
| | - Yanfang Xu
- Landscape Architecture Research Center, Shandong Jianzhu University, Jinan, 250101, China.
| |
Collapse
|
2
|
Lu TW, Chen WH, Chen PY, Shu YC, Chen HH. Perturbation of periodic spot-generation balance leads to diversified pigmentation patterning of harlequin Phalaenopsis orchids: in silico prediction. BMC PLANT BIOLOGY 2024; 24:681. [PMID: 39020275 PMCID: PMC11330024 DOI: 10.1186/s12870-024-05305-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/17/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND A retrotransposon HORT1 in the promoter of the anthocyanin activator gene PeMYB11, microRNA858 (miR858) that targets PeMYB11, and a repressor PeMYBx have been implicated in pigmentation patterning diversity of harlequin Phalaenopsis orchids. However, the interrelationship among them remains to be elucidated. RESULTS To understand how these factors interact to generate anthocyanin spots in Phalaenopsis, we successfully developed a mathematical model based on the known reaction-diffusion system to simulate their interplay and refined the conceptual biological model. Intriguingly, the expression of both PeMYBx and PeMYB11 were in phase for purple spot formation, even though they showed adverse effects on anthocyanin accumulations. An increase in the self-activation rate of PeMYB11 resulted in the increased size of purple spots, but no effects on spot fusion. Decreased degradation rate of miR858 in the purple regions, led to disruption of the formation of spotted pigmentation patterning and a full-red pigmentation pattern. Significantly, the reduced miR858 level promotes the fusion of large dark purple dots induced by the solo-LTR of HORT1, eventually generating the purple patches. In addition, the spatially heterogeneous insertion of HORT1 caused by the remnant solo-LTR of HORT1 derived from random homologous unequal recombination of HORT1 in individual cells of floral organs could explain the diverse pigmentation patterning of harlequin Phalaenopsis. CONCLUSIONS This devised model explains how HORT1 and miR858 regulate the formation of the pigmentation patterning and holds great promise for developing efficient and innovative approaches to breeding harlequin Phalaenopsis orchids.
Collapse
Affiliation(s)
- Ti-Wen Lu
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wen-Huei Chen
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan
| | - Pao-Yang Chen
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, 115, Taiwan
| | - Yu-Chen Shu
- Department of Mathematics, National Cheng Kung University, Tainan, 701, Taiwan.
| | - Hong-Hwa Chen
- Department of Life Sciences, National Cheng Kung University, Tainan, 701, Taiwan.
- Orchid Research and Development Center, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
3
|
Jin G, Zhang X, Yu S, Du Y, Wang M, Zhao C, Zhang M. Screening and validation of optimal miRNA reference genes in different developing stages and tissues of Lilium henryi Baker. Sci Rep 2024; 14:1545. [PMID: 38233457 PMCID: PMC10794412 DOI: 10.1038/s41598-024-51562-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 01/06/2024] [Indexed: 01/19/2024] Open
Abstract
Dynamic miRNA detection using the qRT-PCR technique requires appropriate reference genes to ensure data reliability. Previous studies have screened internal reference genes in plants during embryonic development and various stress treatment, involving relatively few tissues and organs. There is no relevant miRNA study in Lilium henryi Baker and limited research on the optimal miRNA reference genes in lilies, such as 5S, 18S, U6 and Actin. Twelve genes were selected as candidate reference genes whose expression stability was analyzed in petals at different developmental stages and other tissues using various algorithms, such as geNorm, NormFinder, BestKeeper, and Delta CT. The results revealed that the optimal combination of reference genes for Lilium henryi Baker petals at different developmental stages was osa-miR166m and osa-miR166a-3p, while that for different tissues of Lilium henryi Baker was osa-miR166g-3p and osa-miR166a-3p.Four important genes related to growth and development regulation, namely, osa-miR156a, osa-miR395b, osa-miR396a-3p, and osa-miR396a-5p, were selected for validation. The findings of the present study could contribute to future investigations onmiRNA expression and the related functions in Lilium henryi Baker while providing important references for the normalization of the miRNA expression in other varieties of lily.
Collapse
Affiliation(s)
- Ge Jin
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China
| | - Xiuhai Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Shiyin Yu
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
- College of Landscape Achitecture, Beijing Forestry University, Beijing, 100097, China
| | - Yunpeng Du
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China
| | - Meixian Wang
- College of Landscape Achitecture, Beijing Forestry University, Beijing, 100097, China
| | - Chunli Zhao
- College of Forestry and Grassland Science, Jilin Agricultural University, Changchun, 130118, China.
| | - Mingfang Zhang
- Beijing Academy of Agriculture and Forestry Sciences, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100097, China.
| |
Collapse
|
4
|
Jiang L, Gao Y, Han L, Zhang W, Fan P. Designing plant flavonoids: harnessing transcriptional regulation and enzyme variation to enhance yield and diversity. FRONTIERS IN PLANT SCIENCE 2023; 14:1220062. [PMID: 37575923 PMCID: PMC10420081 DOI: 10.3389/fpls.2023.1220062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/05/2023] [Indexed: 08/15/2023]
Abstract
Plant synthetic biology has emerged as a powerful and promising approach to enhance the production of value-added metabolites in plants. Flavonoids, a class of plant secondary metabolites, offer numerous health benefits and have attracted attention for their potential use in plant-based products. However, achieving high yields of specific flavonoids remains challenging due to the complex and diverse metabolic pathways involved in their biosynthesis. In recent years, synthetic biology approaches leveraging transcription factors and enzyme diversity have demonstrated promise in enhancing flavonoid yields and expanding their production repertoire. This review delves into the latest research progress in flavonoid metabolic engineering, encompassing the identification and manipulation of transcription factors and enzymes involved in flavonoid biosynthesis, as well as the deployment of synthetic biology tools for designing metabolic pathways. This review underscores the importance of employing carefully-selected transcription factors to boost plant flavonoid production and harnessing enzyme promiscuity to broaden flavonoid diversity or streamline the biosynthetic steps required for effective metabolic engineering. By harnessing the power of synthetic biology and a deeper understanding of flavonoid biosynthesis, future researchers can potentially transform the landscape of plant-based product development across the food and beverage, pharmaceutical, and cosmetic industries, ultimately benefiting consumers worldwide.
Collapse
Affiliation(s)
- Lina Jiang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Yifei Gao
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Leiqin Han
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxuan Zhang
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Pengxiang Fan
- Department of Horticulture, Zijingang Campus, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plants Growth and Development, Agricultural Ministry of China, Hangzhou, China
| |
Collapse
|
5
|
Chen H, Yang X, Xu R, Chen X, Zhong H, Liu N, Huang L, Luo H, Huai D, Liu W, Chen Y, Chen J, Jiang H. Genetic mapping of AhVt1, a novel genetic locus that confers the variegated testa color in cultivated peanut ( Arachis hypogaea L.) and its utilization for marker-assisted selection. FRONTIERS IN PLANT SCIENCE 2023; 14:1145098. [PMID: 37021305 PMCID: PMC10067746 DOI: 10.3389/fpls.2023.1145098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/27/2023] [Indexed: 06/19/2023]
Abstract
INTRODUCTION Peanut (Arachis hypogaea L.) is an important cash crop worldwide. Compared with the ordinary peanut with pure pink testa, peanut with variegated testa color has attractive appearance and a higher market value. In addition, the variegated testa represents a distinct regulation pattern of anthocyanin accumulation in integument cells. METHODS In order to identify the genetic locus underlying variegated testa color in peanut, two populations were constructed from the crosses between Fuhua 8 (pure-pink testa) and Wucai (red on white variegated testa), Quanhonghua 1 (pure-red testa) and Wucai, respectively. Genetic analysis and bulked sergeant analysis sequencing were applied to detect and identify the genetic locus for variegated testa color. Marker-assisted selection was used to develop new variegated testa peanut lines. RESULTS As a result, all the seeds harvested from the F1 individuals of both populations showed the variegated testa type with white trace. Genetic analysis revealed that the pigmentation of colored region in red on white variegated testa was controlled by a previous reported gene AhRt1, while the formation of white region (un-pigmented region) in variegated testa was controlled by another single genetic locus. This locus, named as AhVt1 (Arachis hypogaea Variegated Testa 1), was preliminary mapped on chromosome 08 through bulked sergeant analysis sequencing. Using a secondary mapping population derived from the cross between Fuhua 8 and Wucai, AhVt1 was further mapped to a 1.89-Mb genomic interval by linkage analysis, and several potential genes associated with the uneven distribution of anthocyanin, such as MADS-box, MYB, and Chalcone synthase-like protein, were harbored in the region. Moreover, the molecular markers closely linked to the AhVt1 were developed, and the new variegated testa peanut lines were obtained with the help of marker-assisted selection. CONCLUSION Our findings will accelerate the breeding program for developing new peanut varieties with "colorful" testa colors and laid a foundation for map-based cloning of gene responsible for variegated testa.
Collapse
Affiliation(s)
- Hao Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Xinlei Yang
- State Key Laboratory of North China Crop Improvement and Regulation, North China Key Laboratory for Crop Germplasm Resources of Education Ministry, Key Laboratory for Crop Germplasm Resources of Hebei, Hebei Agricultural University, Baoding, China
| | - Rirong Xu
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Xiangyu Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Haifeng Zhong
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Nian Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Li Huang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Huaiyong Luo
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Dongxin Huai
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| | - Wenjing Liu
- Institute of Quality Standards and Testing Technology for Agro-Products, Fujian Academy of Agricultural Sciences, Fujian Key Laboratory of Agro-products Quality and Safety, Fuzhou, China
| | - Yuhua Chen
- Institute of Crop Sciences, Fujian Academy of Agricultural Sciences, Fujian Research Station of Crop Gene Resource and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Fujian Engineering Research Center for Characteristic Upland Crops Breeding, Fujian Engineering Laboratory of Crop Molecular Breeding, Fuzhou, China
| | - Jianhong Chen
- R&D Center for Oil Crops, Quanzhou Institute of Agricultural Sciences, Jinjiang, China
| | - Huifang Jiang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs of People’s Republic of China, Wuhan, China
| |
Collapse
|
6
|
Wang Y, Ye H, Wang K, Huang C, Si X, Wang J, Xu Y, Huang Y, Huang J, Li Y. CcMYB12 Positively Regulates Flavonoid Accumulation during Fruit Development in Carya cathayensis and Has a Role in Abiotic Stress Responses. Int J Mol Sci 2022; 23:15618. [PMID: 36555261 PMCID: PMC9779359 DOI: 10.3390/ijms232415618] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 11/28/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
Flavonoid, an important secondary metabolite in plants, is involved in many biological processes. Its synthesis originates from the phenylpropane metabolic pathway, and it is catalyzed by a series of enzymes. The flavonoid biosynthetic pathway is regulated by many transcription factors, among which MYB transcription factors are thought to be key regulators. Hickory (Carya cathayensis) is an economic forest tree species belonging to the Juglandaceae family, and its fruit is rich in flavonoids. The transcriptome of exocarp and seed of hickory has previously been sequenced and analyzed by our team, revealing that CcMYB12 (CCA0691S0036) may be an important regulator of flavonoid synthesis. However, the specific regulatory role of CcMYB12 in hickory has not been clarified. Through a genome-wide analysis, a total of 153 R2R3-MYB genes were identified in hickory, classified into 23 subclasses, of which CcMYB12 was located in Subclass 7. The R2R3-MYBs showed a differential expression with the development of hickory exocarp and seed, indicating that these genes may regulate fruit development and metabolite accumulation. The phylogenetic analysis showed that CcMYB12 is a flavonol regulator, and its expression trend is the same as or opposite to that of flavonol synthesis-related genes. Moreover, CcMYB12 was found to be localized in the nucleus and have self-activation ability. The dual-luciferase reporter assay demonstrated that CcMYB12 strongly bonded to and activated the promoters of CcC4H, CcCHS, CcCHI, and CcF3H, which are key genes of the flavonoid synthesis pathway. Overexpression of CcMYB12 in Arabidopsis thaliana could increase the content of total flavonoids and the expression of related genes, including PAL, C4H, CHS, F3H, F3’H, ANS, and DFR, in the flavonoid synthesis pathway. These results reveal that CcMYB12 may directly regulate the expression of flavonoid-related genes and promote flavonoid synthesis in hickory fruit. Notably, the expression level of CcMYB12 in hickory seedlings was significantly boosted under NaCl and PEG treatments, while it was significantly downregulated under acid stress, suggesting that CcMYB12 may participate in the response to abiotic stresses. The results could provide a basis for further elucidating the regulation network of flavonoid biosynthesis and lay a foundation for developing new varieties of hickory with high flavonoid content.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqin Huang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an District, Hangzhou 311300, China
| | - Yan Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin’an District, Hangzhou 311300, China
| |
Collapse
|
7
|
Research progress about microRNAs involved in plant secondary metabolism. Int J Biol Macromol 2022; 216:820-829. [DOI: 10.1016/j.ijbiomac.2022.07.224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/21/2022] [Accepted: 07/27/2022] [Indexed: 11/18/2022]
|
8
|
Lin F, Chen SP, Lin KH, Chen C, Yao F, Zhong L, Chen W, Kuo YW. Integrated small RNA profiling and degradome analysis of Anthurium andraeanum cultivars with different-colored spathes. JOURNAL OF PLANT RESEARCH 2022; 135:609-626. [PMID: 35534649 DOI: 10.1007/s10265-022-01394-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/24/2022] [Indexed: 06/14/2023]
Abstract
MicroRNAs (miRNAs) are known to play vital roles in coloration of leaves, flowers, and fruits in plants. However, their functions in spathe coloration are poorly known. Anthurium andraeanum is a popular ornamental plant with various spathe colors. In this study, small RNA and degradome libraries from three A. andraeanum cultivars with different-colored spathes were constructed and sequenced. Illumina sequencing resulted in 94 conserved miRNAs, and 34 novel miRNAs in total were then identified based on precursor sequences and hairpin structures. Differential expression analysis showed that 52, 51, and 49 miRNAs were differentially expressed in comparisons of orange- versus white-colored spathe, purple- versus white-colored spathe, and purple- versus orange-colored spathe, respectively. The expression patterns of miRNAs and their corresponding targets involved in spathe coloration were further analyzed, and displayed that miR156b and miR529 were highly abundant in the spathes with higher anthocyanin content. These two miRNAs co-targeted a gene encoding SPL17, which may function as a negative regulator in anthocyanin accumulation. In addition, miR408 was also abundantly expressed in purple- and orange-colored spathes, and its typical targets were also identified. This comprehensive integrated analysis provides insight into the miRNA-mediated genetic regulation in spathe coloration of A. andraeanum.
Collapse
Affiliation(s)
- Fazhuang Lin
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Shi-Peng Chen
- Institute of Dryland Crops, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Kuan-Hung Lin
- Department of Horticulture and Biotechnology, Chinese Culture University, Taipei, 11114, Taiwan
| | - Changming Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Fengqin Yao
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Linshan Zhong
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Weiting Chen
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China
| | - Yun-Wei Kuo
- Institute of Flowers, Sanming Academy of Agricultural Sciences, Sanming, 365000, Fujian, China.
| |
Collapse
|
9
|
Qi F, Liu Y, Luo Y, Cui Y, Lu C, Li H, Huang H, Dai S. Functional analysis of the ScAG and ScAGL11 MADS-box transcription factors for anthocyanin biosynthesis and bicolour pattern formation in Senecio cruentus ray florets. HORTICULTURE RESEARCH 2022; 9:uhac071. [PMID: 35734379 PMCID: PMC9209810 DOI: 10.1093/hr/uhac071] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 03/07/2022] [Indexed: 06/15/2023]
Abstract
Cineraria (Senecio cruentus) is an ornamental plant with pure colour and bicolour cultivars, widely used for landscaping. Anthocyanin biosynthesis influences coloration patterns in cineraria. However, how anthocyanins accumulate and distribute in cineraria is poorly understood. This study investigated the molecular mechanisms underlying anthocyanin biosynthesis and bicolour formation in cineraria using pure colour and bicolour cultivars. Transcriptome and gene expression analysis showed that five genes, ScCHS2, ScF3H1, ScDFR3, ScANS, and ScbHLH17, were inhibited in the white cultivar and colourless regions of bicolour cultivars. In contrast, two MADS-box genes, ScAG and ScAGL11, showed significantly higher expression in the colourless regions of bicolour cultivars. ScAG and ScAGL11 were localized in the nucleus and co-expressed with the bicolour trait. Further functional analysis verified that ScAG inhibits anthocyanin accumulation in tobacco (Nicotiana tabacum). However, virus-induced gene silencing (VIGS) experiments showed that silencing of ScAG and ScAGL11 increases anthocyanin content in cineraria leaves. Similar results were observed when ScAG and ScAGL11 were silenced in the cineraria capitulum, accompanied by the smaller size of the colourless region, specifically in the ScAG/ScAGL11-silenced plants. The expression of ScCHS2, ScDFR3, and ScF3H1 increased in silenced cineraria leaves and capitulum. Furthermore, yeast two-hybrid and bimolecular fluorescence complementation experiments demonstrated that ScAG interacts with ScAGL11. Moreover, ScAG directly inhibited the transcription of ScF3H1 while ScAGL11 inhibited ScDFR3 expression by binding to their promoters separately. The findings reported herein indicate that ScAG and ScAGL11 negatively regulate anthocyanin biosynthesis in cineraria ray florets, and their differential expression in ray florets influences the bicolour pattern appearance.
Collapse
Affiliation(s)
- Fangting Qi
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yuting Liu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yiliu Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Yumeng Cui
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Chenfei Lu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Hao Li
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - He Huang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| | - Silan Dai
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Education Ministry, School of Landscape Architecture, Beijing Forestry University, Beijing, 100083, China
| |
Collapse
|
10
|
Albert NW, Lafferty DJ, Moss SMA, Davies KM. Flavonoids - flowers, fruit, forage and the future. J R Soc N Z 2022; 53:304-331. [PMID: 39439482 PMCID: PMC11459809 DOI: 10.1080/03036758.2022.2034654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
Abstract
Flavonoids are plant-specific secondary metabolites that arose early during land-plant colonisation, most likely evolving for protection from UV-B and other abiotic stresses. As plants increased in complexity, so too did the diversity of flavonoid compounds produced and their physiological roles. The most conspicuous are the pigments, including yellow aurones and chalcones, and the red/purple/blue anthocyanins, which provide colours to flowers, fruits and foliage. Anthocyanins have been particularly well studied, prompted by the ease of identifying mutants of genes involved in biosynthesis or regulation, providing an important model system to study fundamental aspects of genetics, gene regulation and biochemistry. This has included identifying the first plant transcription factor, and later resolving how multiple classes of transcription factor coordinate in regulating the production of various flavonoid classes - each with different activities and produced at differing developmental stages. In addition, dietary flavonoids from fruits/vegetables and forage confer human- and animal-health benefits, respectively. This has prompted strong interest in generating new plant varieties with increased flavonoid content through both traditional breeding and plant biotechnology. Gene-editing technologies provide new opportunities to study how flavonoids are regulated and produced and to improve the flavonoid content of flowers, fruits, vegetables and forages.
Collapse
Affiliation(s)
- Nick W. Albert
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Declan J. Lafferty
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Sarah M. A. Moss
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| | - Kevin M. Davies
- The New Zealand Institute for Plant and Food Research Limited, Palmerston North, New Zealand
| |
Collapse
|
11
|
Ohta Y, Atsumi G, Yoshida C, Takahashi S, Shimizu M, Nishihara M, Nakatsuka T. Post-transcriptional gene silencing of the chalcone synthase gene CHS causes corolla lobe-specific whiting of Japanese gentian. PLANTA 2021; 255:29. [PMID: 34964920 DOI: 10.1007/s00425-021-03815-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Post-transcriptional gene silencing of the chalcone synthase gene CHS specifically suppresses anthocyanin biosynthesis in corolla lobes and is responsible for the formation of a stripe type bicolor in Japanese gentian. The flower of Japanese gentian is a bell-shaped corolla composed of lobes and plicae, which is painted uniformly blue. However, the gentian cultivar 'Hakuju' shows bicolor phenotype (blue-white stripe corolla), in which anthocyanin accumulation is suppressed only in corolla lobes. Expression analysis indicated that steady-state levels of chalcone synthase (CHS) transcripts were remarkably reduced in corolla lobes compared with plicae during petal pigmentation initiation. However, no significant difference in expression levels of other flavonoid biosynthetic structural and regulatory genes was detected in its lobes and plicae. On feeding naringenin in white lobes, anthocyanin accumulation was recovered. Northern blotting probed with CHS confirmed the abundant accumulation of small RNAs in corolla lobes. Likewise, small RNA-seq analysis indicated that short reads from its lobes were predominantly mapped onto the 2nd exon region of the CHS gene, whereas those from the plicae were scarcely mapped. Subsequent infection with the gentian ovary ringspot virus (GORV), which had an RNA-silencing activity, showed the recovery of partial pigmentation in lobes. Hence, these results strongly suggested that suppressing anthocyanin accumulation in the lobes of bicolored 'Hakuju' was attributed to the specific degradation of CHS mRNA in corolla lobes, which was through post-transcriptional gene silencing (PTGS). Herein, we revealed the molecular mechanism of strip bicolor formation in Japanese gentian, and showed that PTGS of CHS was also responsible for flower color pattern in a floricultural plant other than petunia and dahlia.
Collapse
Affiliation(s)
- Yuka Ohta
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan
| | - Go Atsumi
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Sapporo, 062-8517, Japan
| | - Chiharu Yoshida
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Motoki Shimizu
- Iwate Biotechnology Research Center, Kitakami, 024-0003, Japan
| | | | - Takashi Nakatsuka
- Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, 422-8529, Japan.
- College of Agriculture, Academic Institute, Shizuoka University, Shizuoka, 422-8529, Japan.
| |
Collapse
|
12
|
Khusnutdinov E, Sukhareva A, Panfilova M, Mikhaylova E. Anthocyanin Biosynthesis Genes as Model Genes for Genome Editing in Plants. Int J Mol Sci 2021; 22:8752. [PMID: 34445458 PMCID: PMC8395717 DOI: 10.3390/ijms22168752] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 12/13/2022] Open
Abstract
CRISPR/Cas, one of the most rapidly developing technologies in the world, has been applied successfully in plant science. To test new nucleases, gRNA expression systems and other inventions in this field, several plant genes with visible phenotypic effects have been constantly used as targets. Anthocyanin pigmentation is one of the most easily identified traits, that does not require any additional treatment. It is also associated with stress resistance, therefore plants with edited anthocyanin genes might be of interest for agriculture. Phenotypic effect of CRISPR/Cas editing of PAP1 and its homologs, DFR, F3H and F3'H genes have been confirmed in several distinct plant species. DFR appears to be a key structural gene of anthocyanin biosynthesis, controlled by various transcription factors. There are still many promising potential model genes that have not been edited yet. Some of them, such as Delila, MYB60, HAT1, UGT79B2, UGT79B3 and miR156, have been shown to regulate drought tolerance in addition to anthocyanin biosynthesis. Genes, also involved in trichome development, such as TTG1, GLABRA2, MYBL2 and CPC, can provide increased visibility. In this review successful events of CRISPR/Cas editing of anthocyanin genes are summarized, and new model genes are proposed. It can be useful for molecular biologists and genetic engineers, crop scientists, plant genetics and physiologists.
Collapse
Affiliation(s)
| | | | | | - Elena Mikhaylova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center RAS, Prospekt Oktyabrya 71, 450054 Ufa, Russia; (E.K.); (A.S.); (M.P.)
| |
Collapse
|
13
|
Yamagishi M. High promoter sequence variation in subgroup 6 members of R2R3-MYB genes is involved in different floral anthocyanin color patterns in Lilium spp. Mol Genet Genomics 2021; 296:1005-1015. [PMID: 34052932 DOI: 10.1007/s00438-021-01799-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/25/2021] [Indexed: 11/26/2022]
Abstract
The spatially and temporally distinct expression of R2R3-MYB positive regulators is among the major mechanisms that create various anthocyanin color patterns in many flowers. However, we do not know how these positive regulators have gained different expression profiles. In the Asiatic hybrid lily 'Lollypop' (derived from the crosses of species belonging to Sinomartagon/Daurolirion section), MYB12 and MYB19S regulate the pigmentation at whole tepals and raised tepal spots, respectively. In the Oriental hybrid lily 'Sorbonne' (derived from the crosses of species belonging to the Archelirion section), MYB12 regulates both whole tepal and raised spot pigmentation. The genes have similar amino acid sequences with similar protein functions but exhibit different expression profiles in lily flowers. As promoters are among the most significant factors affecting gene expression profiles, their promoter sequences were determined in this study. The three genes had very different promoter sequences, and putative cis-regulatory elements were not conserved in numbers or order. To further confirm the promoter functions, tobacco plants were transformed with native promoter-driven MYB12 or MYB19S genes of 'Lollypop.' Expression levels of MYB12 were higher in corolla tubes than in lobes, while those of MYB19S were higher in corolla lobes than in tubes. Thus, the diverse promoter functions were likely to be the leading causes of their different expression profiles and generation of unique color patterns. Finally, the history of R2R3-MYB gene establishment during lily evolution was estimated using sequence data.
Collapse
Affiliation(s)
- Masumi Yamagishi
- Research Faculty of Agriculture, Hokkaido University, N9W9, Kita-ku, Sapporo, 060-8589, Japan.
| |
Collapse
|
14
|
Parra-Galindo MA, Soto-Sedano JC, Mosquera-Vásquez T, Roda F. Pathway-based analysis of anthocyanin diversity in diploid potato. PLoS One 2021; 16:e0250861. [PMID: 33914830 PMCID: PMC8084248 DOI: 10.1371/journal.pone.0250861] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Anthocyanin biosynthesis is one of the most studied pathways in plants due to the important ecological role played by these compounds and the potential health benefits of anthocyanin consumption. Given the interest in identifying new genetic factors underlying anthocyanin content we studied a diverse collection of diploid potatoes by combining a genome-wide association study and pathway-based analyses. By using an expanded SNP dataset, we identified candidate genes that had not been associated with anthocyanin variation in potatoes, namely a Myb transcription factor, a Leucoanthocyanidin dioxygenase gene and a vacuolar membrane protein. Importantly, a genomic region in chromosome 10 harbored the SNPs with strongest associations with anthocyanin content in GWAS. Some of these SNPs were associated with multiple anthocyanin compounds and therefore could underline the existence of pleiotropic genes or anthocyanin biosynthetic clusters. We identified multiple anthocyanin homologs in this genomic region, including four transcription factors and five enzymes that could be governing anthocyanin variation. For instance, a SNP linked to the phenylalanine ammonia-lyase gene, encoding the first enzyme in the phenylpropanoid biosynthetic pathway, was associated with all of the five anthocyanins measured. Finally, we combined a pathway analysis and GWAS of other agronomic traits to identify pathways related to anthocyanin biosynthesis in potatoes. We found that methionine metabolism and the production of sugars and hydroxycinnamic acids are genetically correlated to anthocyanin biosynthesis. The results contribute to the understanding of anthocyanins regulation in potatoes and can be used in future breeding programs focused on nutraceutical food.
Collapse
Affiliation(s)
| | - Johana Carolina Soto-Sedano
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Teresa Mosquera-Vásquez
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|