1
|
Shekhar C, Khosya R, Sharma AK, Thakur K, Mahajan D, Kumar R, Kumar S, Sharma AK. A systematic review on health risks of water pollutants: classification, effects and innovative solutions for conservation. Toxicol Res (Camb) 2025; 14:tfaf014. [PMID: 39872306 PMCID: PMC11761733 DOI: 10.1093/toxres/tfaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/08/2025] [Accepted: 01/20/2025] [Indexed: 01/30/2025] Open
Abstract
In this developing era, increased anthropogenic activities result in the contamination of natural resources. Different kinds of pollutants threaten the water quality being crucial for the existence of life. There are different sources and routes through which different kinds of pollutants cause health consequences. This systematic review consists of the classification of water pollutants and a particular focus on toxicological studies on aquatic life, soil, plants and humans with a comparative account of conservation technologies. In this study, various databases like Scopus, Science Direct, Google Scholar, Research Gate and Web of Science were used to find the most relevant and recent literature till September 2024. Studies were selected based on their focus on classes of water pollutants, routes, their cumulative effects and remediation technologies. This review successfully managed to classify the different water pollutants and found a significant association between their exposure and disorders shown by aquatic life and human health. There is a number of evidence of neurological disorders, reproductive and endocrine disruptions. However, the effect can also be seen in both aquatic as well as terrestrial ecosystems. Long-term exposure to water pollutants presents significant health risks and indicates degrading quality of drinking water and aquatic life. This review provides insight into the emergence of pollutants in water and the need for strong preventive policies. It also suggests the necessity of developing cost-effective and advanced conservation technologies for the availability of safe water.
Collapse
Affiliation(s)
- Chander Shekhar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Reetu Khosya
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Arvind Kumar Sharma
- Department of Chemistry, Minerva PG College of Arts, Science and Commerce, Indora, 176402, Himachal Pradesh, India
| | - Kushal Thakur
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Danish Mahajan
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Rakesh Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Sunil Kumar
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| | - Amit Kumar Sharma
- Department of Animal Sciences, Central University of Himachal Pradesh Shahpur Campus, 176206, Kangra Himachal Pradesh, India
| |
Collapse
|
2
|
Shi S, Qi W, Zhang J, Liang C, Liu W, Han H, Zhuang W, Chen T, Sun W, Chen Y. Proteo-Transcriptomic Analysis Reveals the Mechanisms Underlying Escherichia coli Phenotypic Shifts Under Blue Light. Biotechnol Bioeng 2025. [PMID: 39876573 DOI: 10.1002/bit.28939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/30/2025]
Abstract
Bacteria can adapt their lifestyles, including microbial growth, metabolism, and biofilm formation, in response to light signaling. However, the molecular pathways through which blue light affects the lifestyle of Escherichia coli (E. coli) remain incomplete and poorly understood. To address this gap, transcriptomic and proteomic approaches were employed to analyze the physiological differences of E. coli under dark and blue light conditions. Our results indicate that, compared to dark conditions, blue light attenuates flagellar assembly, reduces cell motility and communication, and decreases biofilm formation in E. coli. In addition, this study elucidates the signaling pathways involved in the blue light-mediated regulation of E. coli behavior, providing a theoretical framework for understanding how E. coli responds to blue light signaling to modulate biofilm formation for the production of food chemicals.
Collapse
Affiliation(s)
- Shuqi Shi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenlu Qi
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Jinming Zhang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Caice Liang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Liu
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Hui Han
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wei Zhuang
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Tianpeng Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Wenjun Sun
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Yong Chen
- National Engineering Research Center for Biotechnology, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| |
Collapse
|
3
|
Endoplasmic reticulum-quality control pathway and endoplasmic reticulum-associated degradation mechanism regulate the N-glycoproteins and N-glycan structures in the diatom Phaeodactylum tricornutum. Microb Cell Fact 2022; 21:219. [PMID: 36266689 PMCID: PMC9585838 DOI: 10.1186/s12934-022-01941-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 10/02/2022] [Indexed: 11/10/2022] Open
Abstract
Tunicamycin inhibits the first step of protein N-glycosylation modification. However, the physiological, transcriptomic, and N-glycomic effects of tunicamycin on important marine diatom Phaeodactylum tricornutum are still unknown. In this study, comprehensive approaches were used to study the effects of tunicamycin stress. The results showed that cell growth and photosynthesis were significantly inhibited in P. tricornutum under the tunicamycin stress. The soluble protein content was significantly decreased, while the soluble sugar and neutral lipid were dramatically increased to orchestrate the balance of carbon and nitrogen metabolisms. The stress of 0.3 μg ml-1 tunicamycin resulted in the differential expression of ERQC and ERAD related genes. The upregulation of genes involved in ERQC pathway, the activation of anti-oxidases and the differential expression of genes related with ERAD mechanism might be important for maintaining homeostasis in cell. The identification of N-glycans, especially complex-type N-glycan structures enriched the N-glycan database of diatom P. tricornutum and provided important information for studying the function of N-glycosylation modification on proteins. As a whole, our study proposed working models of ERQC and ERAD will provide a solid foundation for further in-depth study of the related mechanism and the diatom expression system.
Collapse
|
4
|
Xie X, Du H, Chen J, Aslam M, Wang W, Chen W, Li P, Du H, Liu X. Global Profiling of N-Glycoproteins and N-Glycans in the Diatom Phaeodactylum tricornutum. FRONTIERS IN PLANT SCIENCE 2021; 12:779307. [PMID: 34925422 PMCID: PMC8678454 DOI: 10.3389/fpls.2021.779307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/05/2021] [Indexed: 05/04/2023]
Abstract
N-glycosylation is an important posttranslational modification in all eukaryotes, but little is known about the N-glycoproteins and N-glycans in microalgae. Here, N-glycoproteomic and N-glycomic approaches were used to unveil the N-glycoproteins and N-glycans in the model diatom Phaeodactylum tricornutum. In total, 863 different N-glycopeptides corresponding to 639 N-glycoproteins were identified from P. tricornutum. These N-glycoproteins participated in a variety of important metabolic pathways in P. tricornutum. Twelve proteins participating in the N-glycosylation pathway were identified as N-glycoproteins, indicating that the N-glycosylation of these proteins might be important for the protein N-glycosylation pathway. Subsequently, 69 N-glycans corresponding to 59 N-glycoproteins were identified and classified into high mannose and hybrid type N-glycans. High mannose type N-glycans contained four different classes, such as Man-5, Man-7, Man-9, and Man-10 with a terminal glucose residue. Hybrid type N-glycan harbored Man-4 with a terminal GlcNAc residue. The identification of N-glycosylation on nascent proteins expanded our understanding of this modification at a N-glycoproteomic scale, the analysis of N-glycan structures updated the N-glycan database in microalgae. The results obtained from this study facilitate the elucidation of the precise function of these N-glycoproteins and are beneficial for future designing the microalga to produce the functional humanized biopharmaceutical N-glycoproteins for the clinical therapeutics.
Collapse
Affiliation(s)
- Xihui Xie
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Hong Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Jichen Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Muhammad Aslam
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
- Faculty of Marine Sciences, Lasbela University of Agriculture, Water & Marine Sciences, Uthal, Pakistan
| | - Wanna Wang
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Weizhou Chen
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Ping Li
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
| | - Hua Du
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| | - Xiaojuan Liu
- Guangdong Provincial Key Laboratory of Marine Biotechnology, STU-UNIVPM Joint Algal Research Center, College of Sciences, Institute of Marine Sciences, Shantou University, Shantou, China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
5
|
Gao Z, Tang R, Ma S, Jia S, Zhang S, Gong B, Ou J. Design and construction of a hydrophilic coating on macroporous adsorbent resins for enrichment of glycopeptides. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:4515-4527. [PMID: 34515267 DOI: 10.1039/d1ay01276b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Although macroporous adsorbent resins (MARs) have been commercialized and widely applied in industrial and life fields, it is still of necessity to develop simple approaches to functionalize MARs. One of the most widely used methods to realize excellent fouling resistance performance is surface modification of hydrophilic polymers on substrates to fabricate an anti-biofouling coating. Herein, three kinds of hydrophilic poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) MAR were designed and facilely prepared by coating a layer of porous organic polymers (POPs) via either an epoxy-amine ring-opening polymerization or amine-aldehyde condensation reaction using isophthalaldehyde (IPA), 1,4,7,10-tetraazacyclododecane (cyclen), melamine and 1,3,5-triglycidyl isocyanurate (TGIC) as precursors. By taking advantage of their merits, such as large surface area, excellent hydrophilicity and unbiased affinity toward all types of glycopeptide, three functionalized hydrophilic MARs were successfully applied to capture glycopeptides from complex samples as hydrophilic interaction liquid chromatography (HILIC) sorbents. A total of 694 N-glycopeptides and 372 N-glycosylation sites were identified from 2 μL of human serum digest with poly(TC)@MAR, which were not only more than those of poly(MT)@MAR (286 N-glycosylation sites and 547 N-glycopeptides) and poly(IM)@MAR (669 N-glycopeptides and 355 N-glycosylation sites), but also more than those of other reported HILIC materials. This work provided a new and simple way to synthesize enrichment materials for liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis of glycoproteomes.
Collapse
Affiliation(s)
- Zheng Gao
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Ruizhi Tang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shujuan Ma
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shicong Jia
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Bolin Gong
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
| | - Junjie Ou
- School of Chemistry and Chemical Engineering, Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, 750021, China.
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
6
|
Role and mechanism of chaperones calreticulin and ERP57 in restoring trafficking to mutant HERG‑A561V protein. Int J Mol Med 2021; 48:159. [PMID: 34212985 PMCID: PMC8262656 DOI: 10.3892/ijmm.2021.4992] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 05/20/2021] [Indexed: 02/06/2023] Open
Abstract
Long QT syndrome type 2 is caused by a mutation in the human‑ether‑a‑go‑go‑related gene (HERG) gene encoding the rapidly activating delayed rectifier K‑current. HERG is a key cell membrane glycoprotein; however, whether the maturation process of HERG protein involves key molecules derived from the calnexin (CNX)/calreticulin (CRT) cycle and how these molecules work remains unknown. Using western blotting, the present study screened the key molecules CNX/CRT/endoplasmic reticulum protein 57 (ERP57) involved in this cycle, and it was revealed that the protein expression levels of CNX/CRT/ERP57 in wild‑type (WT)/A561V cells were increased compared with those in WT cells (n=3; P<0.05). Additionally, a co‑immunoprecipitation experiment was used to reveal that the ability of CNX/ERP57/CRT to interact with HERG was significantly increased in A561V and WT/A561V cells (n=3; P<0.05). A plasmid lacking the bb' domain of ERP57 was constructed and it was demonstrated that the key site of ERP57 binding to CRT and immature HERG protein is the bb' domain. The whole‑cell patch‑clamp technique detected that the tail current density increased by 46% following overexpression of CRT and by 53% following overexpression of ERP57 in WT/A561V cells. Overexpression of CRT and ERP57 could increased HERG protein levels on the membrane detected by confocal imaging. Furthermore, overexpression of ERP57 and CRT proteins could restore the HERG‑A561V mutant protein trafficking process and rescue the dominant‑negative suppression of WT. Overall, ERP57/CRT served a crucial role in the HERG‑A561V mutant protein trafficking deficiency and degradation process.
Collapse
|