1
|
Chiaravallotti I, Lin J, Arief V, Jahufer Z, Osorno JM, McClean P, Jarquin D, Hoyos-Villegas V. Simulations of multiple breeding strategy scenarios in common bean for assessing genomic selection accuracy and model updating. THE PLANT GENOME 2024; 17:e20388. [PMID: 38317595 DOI: 10.1002/tpg2.20388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/24/2023] [Accepted: 08/20/2023] [Indexed: 02/07/2024]
Abstract
The aim of this study was to evaluate the accuracy of the ridge regression best linear unbiased prediction model across different traits, parent population sizes, and breeding strategies when estimating breeding values in common bean (Phaseolus vulgaris). Genomic selection was implemented to make selections within a breeding cycle and compared across five different breeding strategies (single seed descent, mass selection, pedigree method, modified pedigree method, and bulk breeding) following 10 breeding cycles. The model was trained on a simulated population of recombinant inbreds genotyped for 1010 single nucleotide polymorphism markers including 38 known quantitative trait loci identified in the literature. These QTL included 11 for seed yield, eight for white mold disease incidence, and 19 for days to flowering. Simulation results revealed that realized accuracies fluctuate depending on the factors investigated: trait genetic architecture, breeding strategy, and the number of initial parents used to begin the first breeding cycle. Trait architecture and breeding strategy appeared to have a larger impact on accuracy than the initial number of parents. Generally, maximum accuracies (in terms of the correlation between true and estimated breeding value) were consistently achieved under a mass selection strategy, pedigree method, and single seed descent method depending on the simulation parameters being tested. This study also investigated model updating, which involves retraining the prediction model with a new set of genotypes and phenotypes that have a closer relation to the population being tested. While it has been repeatedly shown that model updating generally improves prediction accuracy, it benefited some breeding strategies more than others. For low heritability traits (e.g., yield), conventional phenotype-based selection methods showed consistent rates of genetic gain, but genetic gain under genomic selection reached a plateau after fewer cycles. This plateauing is likely a cause of faster fixation of alleles and a diminishing of genetic variance when selections are made based on estimated breeding value as opposed to phenotype.
Collapse
Affiliation(s)
| | - Jennifer Lin
- Department of Plant Science, McGill University, Montreal, Quebec, Canada
| | - Vivi Arief
- School of Agriculture and Food Sustainability Faculty of Science, University of Queensland, Brisbane, Australia
| | - Zulfi Jahufer
- School of Agriculture and Food Sustainability Faculty of Science, University of Queensland, Brisbane, Australia
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Phil McClean
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, USA
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, Florida, USA
| | | |
Collapse
|
2
|
Reinprecht Y, Schram L, Perry GE, Morneau E, Smith TH, Pauls KP. Mapping yield and yield-related traits using diverse common bean germplasm. Front Genet 2024; 14:1246904. [PMID: 38234999 PMCID: PMC10791882 DOI: 10.3389/fgene.2023.1246904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 11/29/2023] [Indexed: 01/19/2024] Open
Abstract
Common bean (bean) is one of the most important legume crops, and mapping genes for yield and yield-related traits is essential for its improvement. However, yield is a complex trait that is typically controlled by many loci in crop genomes. The objective of this research was to identify regions in the bean genome associated with yield and a number of yield-related traits using a collection of 121 diverse bean genotypes with different yields. The beans were evaluated in replicated trials at two locations, over two years. Significant variation among genotypes was identified for all traits analyzed in the four environments. The collection was genotyped with the BARCBean6K_3 chip (5,398 SNPs), two yield/antiyield gene-based markers, and seven markers previously associated with resistance to common bacterial blight (CBB), including a Niemann-Pick polymorphism (NPP) gene-based marker. Over 90% of the single-nucleotide polymorphisms (SNPs) were polymorphic and separated the panel into two main groups of small-seeded and large-seeded beans, reflecting their Mesoamerican and Andean origins. Thirty-nine significant marker-trait associations (MTAs) were identified between 31 SNPs and 15 analyzed traits on all 11 bean chromosomes. Some of these MTAs confirmed genome regions previously associated with the yield and yield-related traits in bean, but a number of associations were not reported previously, especially those with derived traits. Over 600 candidate genes with different functional annotations were identified for the analyzed traits in the 200-Kb region centered on significant SNPs. Fourteen SNPs were identified within the gene model sequences, and five additional SNPs significantly associated with five different traits were located at less than 0.6 Kb from the candidate genes. The work confirmed associations between two yield/antiyield gene-based markers (AYD1m and AYD2m) on chromosome Pv09 with yield and identified their association with a number of yield-related traits, including seed weight. The results also confirmed the usefulness of the NPP marker in screening for CBB resistance. Since disease resistance and yield measurements are environmentally dependent and labor-intensive, the three gene-based markers (CBB- and two yield-related) and quantitative trait loci (QTL) that were validated in this work may be useful tools for simplifying and accelerating the selection of high-yielding and CBB-resistant bean cultivars.
Collapse
Affiliation(s)
| | - Lyndsay Schram
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Gregory E. Perry
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - Emily Morneau
- Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Harrow, ON, Canada
| | - Thomas H. Smith
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| | - K. Peter Pauls
- Department of Plant Agriculture, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
3
|
Izquierdo P, Kelly JD, Beebe SE, Cichy K. Combination of meta-analysis of QTL and GWAS to uncover the genetic architecture of seed yield and seed yield components in common bean. THE PLANT GENOME 2023:e20328. [PMID: 37082832 DOI: 10.1002/tpg2.20328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 02/08/2023] [Accepted: 03/01/2023] [Indexed: 05/03/2023]
Abstract
Increasing seed yield in common bean could help to improve food security and reduce malnutrition globally due to the high nutritional quality of this crop. However, the complex genetic architecture and prevalent genotype by environment interactions for seed yield makes increasing genetic gains challenging. The aim of this study was to identify the most consistent genomic regions related with seed yield components and phenology reported in the last 20 years in common bean. A meta-analysis of quantitative trait locus (QTL) for seed yield components and phenology (MQTL-YC) was performed for 394 QTL reported in 21 independent studies under sufficient water and drought conditions. In total, 58 MQTL-YC over different genetic backgrounds and environments were identified, reducing threefold on average the confidence interval (CI) compared with the CI for the initial QTL. Furthermore, 40 MQTL-YC identified were co-located with 210 SNP peak positions reported via genome-wide association (GWAS), guiding the identification of candidate genes. Comparative genomics among these MQTL-YC with MQTL-YC reported in soybean and pea allowed the identification of 14 orthologous MQTL-YC shared across species. The integration of MQTL-YC, GWAS, and comparative genomics used in this study is useful to uncover and refine the most consistent genomic regions related with seed yield components for their use in plant breeding.
Collapse
Affiliation(s)
- Paulo Izquierdo
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - James D Kelly
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Stephen E Beebe
- Bean Program, Crops for Health and Nutrition Area, Alliance Bioversity International-CIAT, Cali, Colombia
| | - Karen Cichy
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
- USDA-ARS, Sugarbeet and Bean Research Unit, East Lansing, MI, USA
| |
Collapse
|
4
|
Arriagada O, Arévalo B, Cabeza RA, Carrasco B, Schwember AR. Meta-QTL Analysis for Yield Components in Common Bean ( Phaseolus vulgaris L.). PLANTS (BASEL, SWITZERLAND) 2022; 12:117. [PMID: 36616246 PMCID: PMC9824219 DOI: 10.3390/plants12010117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/15/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Common bean is one of the most important legumes produced and consumed worldwide because it is a highly valuable food for the human diet. However, its production is mainly carried out by small farmers, who obtain average grain yields below the potential yield of the species. In this sense, numerous mapping studies have been conducted to identify quantitative trait loci (QTL) associated with yield components in common bean. Meta-QTL (MQTL) analysis is a useful approach to combine data sets and for creating consensus positions for the QTL detected in independent studies. Consequently, the objective of this study was to perform a MQTL analysis to identify the most reliable and stable genomic regions associated with yield-related traits of common bean. A total of 667 QTL associated with yield-related traits reported in 21 different studies were collected. A total of 42 MQTL associated with yield-related traits were identified, in which the average confidence interval (CI) of the MQTL was 3.41 times lower than the CIs of the original QTL. Most of the MQTL (28) identified in this study contain QTL associated with yield and phenological traits; therefore, these MQTL can be useful in common bean breeding programs. Finally, a total of 18 candidate genes were identified and associated with grain yield within these MQTL, with functions related to ubiquitin ligase complex, response to auxin, and translation elongation factor activity.
Collapse
Affiliation(s)
- Osvin Arriagada
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Bárbara Arévalo
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Ricardo A. Cabeza
- Departamento de Producción Agrícola, Facultad de Ciencias Agrarias, Universidad de Talca, Talca 3460000, Chile
| | - Basilio Carrasco
- Centro de Estudios en Alimentos Procesados, Talca 3460000, Chile
| | - Andrés R. Schwember
- Departamento de Ciencias Vegetales, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| |
Collapse
|
5
|
González AM, Lebrón R, Yuste-Lisbona FJ, Gómez-Martín C, Ortiz-Atienza A, Hackenberg M, Oliver JL, Lozano R, Santalla M. Decoding Gene Expression Signatures Underlying Vegetative to Inflorescence Meristem Transition in the Common Bean. Int J Mol Sci 2022; 23:ijms232314783. [PMID: 36499112 PMCID: PMC9739310 DOI: 10.3390/ijms232314783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/18/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The tropical common bean (Phaseolus vulgaris L.) is an obligatory short-day plant that requires relaxation of the photoperiod to induce flowering. Similar to other crops, photoperiod-induced floral initiation depends on the differentiation and maintenance of meristems. In this study, the global changes in transcript expression profiles were analyzed in two meristematic tissues corresponding to the vegetative and inflorescence meristems of two genotypes with different sensitivities to photoperiods. A total of 3396 differentially expressed genes (DEGs) were identified, and 1271 and 1533 were found to be up-regulated and down-regulated, respectively, whereas 592 genes showed discordant expression patterns between both genotypes. Arabidopsis homologues of DEGs were identified, and most of them were not previously involved in Arabidopsis floral transition, suggesting an evolutionary divergence of the transcriptional regulatory networks of the flowering process of both species. However, some genes belonging to the photoperiod and flower development pathways with evolutionarily conserved transcriptional profiles have been found. In addition, the flower meristem identity genes APETALA1 and LEAFY, as well as CONSTANS-LIKE 5, were identified as markers to distinguish between the vegetative and reproductive stages. Our data also indicated that the down-regulation of the photoperiodic genes seems to be directly associated with promoting floral transition under inductive short-day lengths. These findings provide valuable insight into the molecular factors that underlie meristematic development and contribute to understanding the photoperiod adaptation in the common bean.
Collapse
Affiliation(s)
- Ana M. González
- Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain
| | - Ricardo Lebrón
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Cristina Gómez-Martín
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Michael Hackenberg
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - José L. Oliver
- Departamento de Genética, Facultad de Ciencias & Laboratorio de Bioinformática, Centro de Investigación Biomédica, Universidad de Granada, 18071 Granada, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Marta Santalla
- Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, P.O. Box 28, 36080 Pontevedra, Spain
- Correspondence: ; Tel.: +34-986-596134; Fax: +34-986-851362
| |
Collapse
|
6
|
Verma SK, Mittal S, Gayacharan, Wankhede DP, Parida SK, Chattopadhyay D, Prasad G, Mishra DC, Joshi DC, Singh M, Singh K, Singh AK. Transcriptome Analysis Reveals Key Pathways and Candidate Genes Controlling Seed Development and Size in Ricebean ( Vigna umbellata). Front Genet 2022; 12:791355. [PMID: 35126460 PMCID: PMC8815620 DOI: 10.3389/fgene.2021.791355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 12/23/2021] [Indexed: 11/27/2022] Open
Abstract
Ricebean (Vigna umbellata) is a lesser known pulse with well-recognized potential. Recently, it has emerged as a legume with endowed nutritional potential because of high concentration of quality protein and other vital nutrients in its seeds. However, the genes and pathways involved in regulating seed development and size are not understood in this crop. In our study, we analyzed the transcriptome of two genotypes with contrasting grain size (IC426787: large seeded and IC552985: small seeded) at two different time points, namely, 5 and 10 days post-anthesis (DPA). The bold seeded genotype across the time points (B5_B10) revealed 6,928 differentially expressed genes (DEGs), whereas the small seeded genotype across the time point (S5_S10) contributed to 14,544 DEGs. We have also identified several candidate genes for seed development-related traits like seed size and 100-seed weight. On the basis of similarity search and domain analysis, some candidate genes (PHO1, cytokinin dehydrogenase, A-type cytokinin, and ARR response negative regulator) related to 100-seed weight and seed size showed downregulation in the small seeded genotype. The MapMan and KEGG analysis confirmed that auxin and cytokinin pathways varied in both the contrasting genotypes and can therefore be the regulators of the seed size and other seed development-related traits in ricebeans. A total of 51 genes encoding SCF TIR1/AFB , Aux/IAA, ARFs, E3 ubiquitin transferase enzyme, and 26S proteasome showing distinct expression dynamics in bold and small genotypes were also identified. We have also validated randomly selected SSR markers in eight accessions of the Vigna species (V. umbellata: 6; Vigna radiata: 1; and Vigna mungo: 1). Cross-species transferability pattern of ricebean-derived SSR markers was higher in V. radiata (73.08%) than V. mungo (50%). To the best of our knowledge, this is the first transcriptomic study conducted in this crop to understand the molecular basis of any trait. It would provide us a comprehensive understanding of the complex transcriptome dynamics during the seed development and gene regulatory mechanism of the seed size determination in ricebeans.
Collapse
Affiliation(s)
| | - Shikha Mittal
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Gayacharan
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | | | - Geeta Prasad
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | | | | | - Mohar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Amit Kumar Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
7
|
Boden SA. Evolution: Replicated mutation of COL2 contributed long-day flowering in common bean. Curr Biol 2021; 31:R384-R386. [PMID: 33905695 DOI: 10.1016/j.cub.2021.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The ability to flower without strict daylength constraints has helped spread cultivation of crop plants to new locations. The generation of daylength-insensitive common bean accessions in central and South America involved the repeated selection of mutant alleles for a key transcription factor that suppresses long-day flowering.
Collapse
Affiliation(s)
- Scott A Boden
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Glen Osmond, SA 5064, Australia.
| |
Collapse
|
8
|
González AM, Vander Schoor JK, Fang C, Kong F, Wu J, Weller JL, Santalla M. Ancient relaxation of an obligate short-day requirement in common bean through loss of CONSTANS-like gene function. Curr Biol 2021; 31:1643-1652.e2. [PMID: 33609454 DOI: 10.1016/j.cub.2021.01.075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 01/18/2021] [Accepted: 01/21/2021] [Indexed: 01/24/2023]
Abstract
Common bean (Phaseolus vulgaris L.) is a major global food staple and source of dietary protein that was domesticated independently in Mexico and Andean South America. Its subsequent development as a crop of importance worldwide has been enabled by genetic relaxation of the strict short-day requirement typical of wild forms, but the genetic basis for this change is not well understood. Recently, a loss of photoperiod sensitivity was shown to result from mutations in the phytochrome photoreceptor gene Ppd/PHYA3 that arose independently within the two major domesticated lineages. Here, we define a second major photoperiod sensitivity locus, at which recessive alleles associate with deleterious mutations affecting the CONSTANS-like gene COL2. A wider survey of sequence variation in over 800 diverse lines, including wild, landrace, and domesticated accessions, show that distinct col2 haplotypes are associated with early flowering in Andean and Mesoamerican germplasm. The relative frequencies and distributions of COL2 and PHYA3 haplotypes imply that photoperiod adaptation developed in two phases within each gene pool: an initial reduction in sensitivity through impairment of COL2 function and subsequent complete loss through PHYA3. Gene expression analyses indicate that COL2 functions downstream of PHYA3 to repress expression of FT genes and may function in parallel with PvE1, the bean ortholog of a key legume-specific flowering repressor. Collectively, these results define the molecular basis for a key phenological adaptation, reveal a striking convergence in the naturally replicated evolution of this major crop, and further emphasize the wider evolutionary lability of CONSTANS effects on flowering time control.
Collapse
Affiliation(s)
- Ana M González
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain
| | | | - Chao Fang
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Innovation Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jing Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - James L Weller
- School of Natural Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| | - Marta Santalla
- Grupo de Genética del Desarrollo de Plantas, Misión Biológica de Galicia-CSIC, PO Box 28, 36080 Pontevedra, Spain.
| |
Collapse
|