1
|
Huang X, Zhu F, Wang X, Zhang B. Automatic Measurement of Seed Geometric Parameters Using a Handheld Scanner. SENSORS (BASEL, SWITZERLAND) 2024; 24:6117. [PMID: 39338862 PMCID: PMC11436011 DOI: 10.3390/s24186117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 09/30/2024]
Abstract
Seed geometric parameters are important in yielding trait scorers, quantitative trait loci, and species recognition and classification. A novel method for automatic measurement of three-dimensional seed phenotypes is proposed. First, a handheld three-dimensional (3D) laser scanner is employed to obtain the seed point cloud data in batches. Second, a novel point cloud-based phenotyping method is proposed to obtain a single-seed 3D model and extract 33 phenotypes. It is connected by an automatic pipeline, including single-seed segmentation, pose normalization, point cloud completion by an ellipse fitting method, Poisson surface reconstruction, and automatic trait estimation. Finally, two statistical models (one using 11 size-related phenotypes and the other using 22 shape-related phenotypes) based on the principal component analysis method are built. A total of 3400 samples of eight kinds of seeds with different geometrical shapes are tested. Experiments show: (1) a single-seed 3D model can be automatically obtained with 0.017 mm point cloud completion error; (2) 33 phenotypes can be automatically extracted with high correlation compared with manual measurements (correlation coefficient (R2) above 0.9981 for size-related phenotypes and R2 above 0.8421 for shape-related phenotypes); and (3) two statistical models are successfully built to achieve seed shape description and quantification.
Collapse
Affiliation(s)
- Xia Huang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China;
- Special Robot Application Technology Research Institute, Chengdu 611730, China
| | - Fengbo Zhu
- School of Geospatial Information, Information Engineering University, Zhengzhou 450001, China;
| | - Xiqi Wang
- School of Transportation Engineering, Shandong Jianzhu University, Jinan 250101, China;
| | - Bo Zhang
- School of Electronic Engineering, Chengdu Technological University, Chengdu 611730, China;
- Special Robot Application Technology Research Institute, Chengdu 611730, China
| |
Collapse
|
2
|
Hamdy S, Charrier A, Corre LL, Rasti P, Rousseau D. Toward robust and high-throughput detection of seed defects in X-ray images via deep learning. PLANT METHODS 2024; 20:63. [PMID: 38711143 DOI: 10.1186/s13007-024-01195-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/26/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The detection of internal defects in seeds via non-destructive imaging techniques is a topic of high interest to optimize the quality of seed lots. In this context, X-ray imaging is especially suited. Recent studies have shown the feasibility of defect detection via deep learning models in 3D tomography images. We demonstrate the possibility of performing such deep learning-based analysis on 2D X-ray radiography for a faster yet robust method via the X-Robustifier pipeline proposed in this article. RESULTS 2D X-ray images of both defective and defect-free seeds were acquired. A deep learning model based on state-of-the-art object detection neural networks is proposed. Specific data augmentation techniques are introduced to compensate for the low ratio of defects and increase the robustness to variation of the physical parameters of the X-ray imaging systems. The seed defects were accurately detected (F1-score >90%), surpassing human performance in computation time and error rates. The robustness of these models against the principal distortions commonly found in actual agro-industrial conditions is demonstrated, in particular, the robustness to physical noise, dimensionality reduction and the presence of seed coating. CONCLUSION This work provides a full pipeline to automatically detect common defects in seeds via 2D X-ray imaging. The method is illustrated on sugar beet and faba bean and could be efficiently extended to other species via the proposed generic X-ray data processing approach (X-Robustifier). Beyond a simple proof of feasibility, this constitutes important results toward the effective use in the routine of deep learning-based automatic detection of seed defects.
Collapse
Affiliation(s)
- Sherif Hamdy
- GEVES, Station Nationale d'Essais de Semences, 25 Georges Morel, 49070, Beaucouze, France
| | - Aurélie Charrier
- GEVES, Station Nationale d'Essais de Semences, 25 Georges Morel, 49070, Beaucouze, France
| | - Laurence Le Corre
- GEVES, Station Nationale d'Essais de Semences, 25 Georges Morel, 49070, Beaucouze, France
| | - Pejman Rasti
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAe IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49100, Angers, France
- Centre d'Études et de Recherche pour l'Aide à la Décision (CERADE), École d'ingénieurs (ESAIP), 49100, Angers, France
| | - David Rousseau
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS), UMR INRAe IRHS, Université d'Angers, 62 Avenue Notre Dame du Lac, 49100, Angers, France.
- IRHS, INRAE, Institut Agro, Univ. Angers, SFR4207 QuaSaV, 42 Georges Morel CS 60057, 49071, Beaucouze, France.
| |
Collapse
|
3
|
Tosin R, Cunha M, Monteiro-Silva F, Santos F, Barroso T, Martins R. Bi-directional hyperspectral reconstruction of cherry tomato: diagnosis of internal tissues maturation stage and composition. FRONTIERS IN PLANT SCIENCE 2024; 15:1351958. [PMID: 38434432 PMCID: PMC10905776 DOI: 10.3389/fpls.2024.1351958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
Introduction Precision monitoring maturity in climacteric fruits like tomato is crucial for minimising losses within the food supply chain and enhancing pre- and post-harvest production and utilisation. Objectives This paper introduces an approach to analyse the precision maturation of tomato using hyperspectral tomography-like. Methods A novel bi-directional spectral reconstruction method is presented, leveraging visible to near-infrared (Vis-NIR) information gathered from tomato spectra and their internal tissues (skin, pulp, and seeds). The study, encompassing 118 tomatoes at various maturation stages, employs a multi-block hierarchical principal component analysis combined with partial least squares for bi-directional reconstruction. The approach involves predicting internal tissue spectra by decomposing the overall tomato spectral information, creating a superset with eight latent variables for each tissue. The reverse process also utilises eight latent variables for reconstructing skin, pulp, and seed spectral data. Results The reconstruction of the tomato spectra presents a mean absolute percentage error of 30.44 % and 5.37 %, 5.25 % and 6.42 % and Pearson's correlation coefficient of 0.85, 0.98, 0.99 and 0.99 for the skin, pulp and seed, respectively. Quality parameters, including soluble solid content (%), chlorophyll (a.u.), lycopene (a.u.), and puncture force (N), were assessed and modelled with PLS with the original and reconstructed datasets, presenting a range of R2 higher than 0.84 in the reconstructed dataset. An empirical demonstration of the tomato maturation in the internal tissues revealed the dynamic of the chlorophyll and lycopene in the different tissues during the maturation process. Conclusion The proposed approach for inner tomato tissue spectral inference is highly reliable, provides early indications and is easy to operate. This study highlights the potential of Vis-NIR devices in precision fruit maturation assessment, surpassing conventional labour-intensive techniques in cost-effectiveness and efficiency. The implications of this advancement extend to various agronomic and food chain applications, promising substantial improvements in monitoring and enhancing fruit quality.
Collapse
Affiliation(s)
- Renan Tosin
- Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of the University of Porto, Porto, Portugal
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| | - Mario Cunha
- Department of Geosciences, Environment and Spatial Planning, Faculty of Sciences of the University of Porto, Porto, Portugal
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| | - Filipe Monteiro-Silva
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| | - Filipe Santos
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| | - Teresa Barroso
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| | - Rui Martins
- INESC TEC - Institute for Systems and Computer Engineering, Technology and Science, Universidade do Porto, Porto, Portugal
| |
Collapse
|
4
|
Abebe AM, Kim Y, Kim J, Kim SL, Baek J. Image-Based High-Throughput Phenotyping in Horticultural Crops. PLANTS (BASEL, SWITZERLAND) 2023; 12:2061. [PMID: 37653978 PMCID: PMC10222289 DOI: 10.3390/plants12102061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 05/18/2023] [Indexed: 09/02/2023]
Abstract
Plant phenotyping is the primary task of any plant breeding program, and accurate measurement of plant traits is essential to select genotypes with better quality, high yield, and climate resilience. The majority of currently used phenotyping techniques are destructive and time-consuming. Recently, the development of various sensors and imaging platforms for rapid and efficient quantitative measurement of plant traits has become the mainstream approach in plant phenotyping studies. Here, we reviewed the trends of image-based high-throughput phenotyping methods applied to horticultural crops. High-throughput phenotyping is carried out using various types of imaging platforms developed for indoor or field conditions. We highlighted the applications of different imaging platforms in the horticulture sector with their advantages and limitations. Furthermore, the principles and applications of commonly used imaging techniques, visible light (RGB) imaging, thermal imaging, chlorophyll fluorescence, hyperspectral imaging, and tomographic imaging for high-throughput plant phenotyping, are discussed. High-throughput phenotyping has been widely used for phenotyping various horticultural traits, which can be morphological, physiological, biochemical, yield, biotic, and abiotic stress responses. Moreover, the ability of high-throughput phenotyping with the help of various optical sensors will lead to the discovery of new phenotypic traits which need to be explored in the future. We summarized the applications of image analysis for the quantitative evaluation of various traits with several examples of horticultural crops in the literature. Finally, we summarized the current trend of high-throughput phenotyping in horticultural crops and highlighted future perspectives.
Collapse
Affiliation(s)
| | | | | | | | - Jeongho Baek
- Department of Agricultural Biotechnology, National Institute of Agricultural Science, Rural Development Administration, Jeonju 54874, Republic of Korea
| |
Collapse
|
5
|
Solimani F, Cardellicchio A, Nitti M, Lako A, Dimauro G, Renò V. A Systematic Review of Effective Hardware and Software Factors Affecting High-Throughput Plant Phenotyping. INFORMATION 2023. [DOI: 10.3390/info14040214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Abstract
Plant phenotyping studies the complex characteristics of plants, with the aim of evaluating and assessing their condition and finding better exemplars. Recently, a new branch emerged in the phenotyping field, namely, high-throughput phenotyping (HTP). Specifically, HTP exploits modern data sampling techniques to gather a high amount of data that can be used to improve the effectiveness of phenotyping. Hence, HTP combines the knowledge derived from the phenotyping domain with computer science, engineering, and data analysis techniques. In this scenario, machine learning (ML) and deep learning (DL) algorithms have been successfully integrated with noninvasive imaging techniques, playing a key role in automation, standardization, and quantitative data analysis. This study aims to systematically review two main areas of interest for HTP: hardware and software. For each of these areas, two influential factors were identified: for hardware, platforms and sensing equipment were analyzed; for software, the focus was on algorithms and new trends. The study was conducted following the PRISMA protocol, which allowed the refinement of the research on a wide selection of papers by extracting a meaningful dataset of 32 articles of interest. The analysis highlighted the diffusion of ground platforms, which were used in about 47% of reviewed methods, and RGB sensors, mainly due to their competitive costs, high compatibility, and versatility. Furthermore, DL-based algorithms accounted for the larger share (about 69%) of reviewed approaches, mainly due to their effectiveness and the focus posed by the scientific community over the last few years. Future research will focus on improving DL models to better handle hardware-generated data. The final aim is to create integrated, user-friendly, and scalable tools that can be directly deployed and used on the field to improve the overall crop yield.
Collapse
Affiliation(s)
- Firozeh Solimani
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122 D/O, 70126 Bari, Italy
| | - Angelo Cardellicchio
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122 D/O, 70126 Bari, Italy
| | - Massimiliano Nitti
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122 D/O, 70126 Bari, Italy
| | - Alfred Lako
- Faculty of Civil Engineering, Polytechnic University of Tirana, Bulevardi Dëshmorët e Kombit Nr. 4, 1000 Tiranë, Albania
| | - Giovanni Dimauro
- Department of Computer Science, University of Bari, Via E. Orabona, 4, 70125 Bari, Italy
| | - Vito Renò
- Institute of Intelligent Industrial Technologies and Systems for Advanced Manufacturing, National Research Council of Italy, Via Amendola 122 D/O, 70126 Bari, Italy
| |
Collapse
|
6
|
Corcoran E, Siles L, Kurup S, Ahnert S. Automated extraction of pod phenotype data from micro-computed tomography. FRONTIERS IN PLANT SCIENCE 2023; 14:1120182. [PMID: 36909425 PMCID: PMC9998914 DOI: 10.3389/fpls.2023.1120182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Plant image datasets have the potential to greatly improve our understanding of the phenotypic response of plants to environmental and genetic factors. However, manual data extraction from such datasets are known to be time-consuming and resource intensive. Therefore, the development of efficient and reliable machine learning methods for extracting phenotype data from plant imagery is crucial. METHODS In this paper, a current gold standard computed vision method for detecting and segmenting objects in three-dimensional imagery (StartDist-3D) is applied to X-ray micro-computed tomography scans of oilseed rape (Brassica napus) mature pods. RESULTS With a relatively minimal training effort, this fine-tuned StarDist-3D model accurately detected (Validation F1-score = 96.3%,Testing F1-score = 99.3%) and predicted the shape (mean matched score = 90%) of seeds. DISCUSSION This method then allowed rapid extraction of data on the number, size, shape, seed spacing and seed location in specific valves that can be integrated into models of plant development or crop yield. Additionally, the fine-tuned StarDist-3D provides an efficient way to create a dataset of segmented images of individual seeds that could be used to further explore the factors affecting seed development, abortion and maturation synchrony within the pod. There is also potential for the fine-tuned Stardist-3D method to be applied to imagery of seeds from other plant species, as well as imagery of similarly shaped plant structures such as beans or wheat grains, provided the structures targeted for detection and segmentation can be described as star-convex polygons.
Collapse
Affiliation(s)
- Evangeline Corcoran
- Environment and Sustainability Theme, AI for Science and Government Programme, The Alan Turing Institute, London, United Kingdom
| | - Laura Siles
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Smita Kurup
- Department of Plant Sciences for the Bioeconomy, Rothamsted Research, Harpenden, United Kingdom
| | - Sebastian Ahnert
- Environment and Sustainability Theme, AI for Science and Government Programme, The Alan Turing Institute, London, United Kingdom
- Department of Chemical Engineering and Biotechnology, School of Technology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
7
|
Leiva F, Zakieh M, Alamrani M, Dhakal R, Henriksson T, Singh PK, Chawade A. Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging. FRONTIERS IN PLANT SCIENCE 2022; 13:1010249. [PMID: 36330238 PMCID: PMC9623152 DOI: 10.3389/fpls.2022.1010249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) is an economically important disease affecting wheat and thus poses a major threat to wheat production. Several studies have evaluated the effectiveness of image analysis methods to predict FHB using disease-infected grains; however, few have looked at the final application, considering the relationship between cost and benefit, resolution, and accuracy. The conventional screening of FHB resistance of large-scale samples is still dependent on low-throughput visual inspections. This study aims to compare the performance of two cost-benefit seed image analysis methods, the free software "SmartGrain" and the fully automated commercially available instrument "Cgrain Value™" by assessing 16 seed morphological traits of winter wheat to predict FHB. The analysis was carried out on a seed set of FHB which was visually assessed as to the severity. The dataset is composed of 432 winter wheat genotypes that were greenhouse-inoculated. The predictions from each method, in addition to the predictions combined from the results of both methods, were compared with the disease visual scores. The results showed that Cgrain Value™ had a higher prediction accuracy of R 2 = 0.52 compared with SmartGrain for which R 2 = 0.30 for all morphological traits. However, the results combined from both methods showed the greatest prediction performance of R 2 = 0.58. Additionally, a subpart of the morphological traits, namely, width, length, thickness, and color features, showed a higher correlation with the visual scores compared with the other traits. Overall, both methods were related to the visual scores. This study shows that these affordable imaging methods could be effective to predict FHB in seeds and enable us to distinguish minor differences in seed morphology, which could lead to a precise performance selection of disease-free seeds/grains.
Collapse
Affiliation(s)
- Fernanda Leiva
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Mustafa Zakieh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Marwan Alamrani
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Rishap Dhakal
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | | | - Pawan Kumar Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
8
|
Domhoefer M, Chakraborty D, Hufnagel E, Claußen J, Wörlein N, Voorhaar M, Anbazhagan K, Choudhary S, Pasupuleti J, Baddam R, Kholova J, Gerth S. X-ray driven peanut trait estimation: computer vision aided agri-system transformation. PLANT METHODS 2022; 18:76. [PMID: 35668530 PMCID: PMC9169268 DOI: 10.1186/s13007-022-00909-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND In India, raw peanuts are obtained by aggregators from smallholder farms in the form of whole pods and the price is based on a manual estimation of basic peanut pod and kernel characteristics. These methods of raw produce evaluation are slow and can result in procurement irregularities. The procurement delays combined with the lack of storage facilities lead to fungal contaminations and pose a serious threat to food safety in many regions. To address this gap, we investigated whether X-ray technology could be used for the rapid assessment of the key peanut qualities that are important for price estimation. RESULTS We generated 1752 individual peanut pod 2D X-ray projections using a computed tomography (CT) system (CTportable160.90). Out of these projections we predicted the kernel weight and shell weight, which are important indicators of the produce price. Two methods for the feature prediction were tested: (i) X-ray image transformation (XRT) and (ii) a trained convolutional neural network (CNN). The prediction power of these methods was tested against the gravimetric measurements of kernel weight and shell weight in diverse peanut pod varieties1. Both methods predicted the kernel mass with R2 > 0.93 (XRT: R2 = 0.93 and mean error estimate (MAE) = 0.17, CNN: R2 = 0.95 and MAE = 0.14). While the shell weight was predicted more accurately by CNN (R2 = 0.91, MAE = 0.09) compared to XRT (R2 = 0.78; MAE = 0.08). CONCLUSION Our study demonstrated that the X-ray based system is a relevant technology option for the estimation of key peanut produce indicators (Figure 1). The obtained results justify further research to adapt the existing X-ray system for the rapid, accurate and objective peanut procurement process. Fast and accurate estimates of produce value are a necessary pre-requisite to avoid post-harvest losses due to fungal contamination and, at the same time, allow the fair payment to farmers. Additionally, the same technology could also assist crop improvement programs in selecting and developing peanut cultivars with enhanced economic value in a high-throughput manner by skipping the shelling of the pods completely. This study demonstrated the technical feasibility of the approach and is a first step to realize a technology-driven peanut production system transformation of the future.
Collapse
Affiliation(s)
- Martha Domhoefer
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
- Universität Osnabrück, 49069, Osnabrück, Germany
| | - Debarati Chakraborty
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Eva Hufnagel
- Development Center for X-Ray Technology (Entwicklungszentrum Röntgentechnik, EZRT), Fraunhofer Institute for Integrated Circuits (Institut Für Integrierte Schaltungen, IIS), Flugplatzstraße 75, 90768, Fürth, Germany
| | - Joelle Claußen
- Development Center for X-Ray Technology (Entwicklungszentrum Röntgentechnik, EZRT), Fraunhofer Institute for Integrated Circuits (Institut Für Integrierte Schaltungen, IIS), Flugplatzstraße 75, 90768, Fürth, Germany
| | - Norbert Wörlein
- Development Center for X-Ray Technology (Entwicklungszentrum Röntgentechnik, EZRT), Fraunhofer Institute for Integrated Circuits (Institut Für Integrierte Schaltungen, IIS), Flugplatzstraße 75, 90768, Fürth, Germany
| | - Marijn Voorhaar
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Krithika Anbazhagan
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Sunita Choudhary
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Janila Pasupuleti
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Rekha Baddam
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
| | - Jana Kholova
- Crops Physiology & Modeling, Accelerated Crop Improvement Research Theme, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, Telangana, India
- Department of Information Technologies, Faculty of Economics and Management, Czech University of Life Sciences Prague, Kamýcká 129, Prague, 165 00, Czech Republic
| | - Stefan Gerth
- Development Center for X-Ray Technology (Entwicklungszentrum Röntgentechnik, EZRT), Fraunhofer Institute for Integrated Circuits (Institut Für Integrierte Schaltungen, IIS), Flugplatzstraße 75, 90768, Fürth, Germany.
| |
Collapse
|
9
|
Boukail S, Macharia M, Miculan M, Masoni A, Calamai A, Palchetti E, Dell'Acqua M. Genome wide association study of agronomic and seed traits in a world collection of proso millet (Panicum miliaceum L.). BMC PLANT BIOLOGY 2021; 21:330. [PMID: 34243721 PMCID: PMC8268170 DOI: 10.1186/s12870-021-03111-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/23/2021] [Indexed: 05/28/2023]
Abstract
BACKGROUND The climate crisis threatens sustainability of crop production worldwide. Crop diversification may enhance food security while reducing the negative impacts of climate change. Proso millet (Panicum milaceum L.) is a minor cereal crop which holds potential for diversification and adaptation to different environmental conditions. In this study, we assembled a world collection of proso millet consisting of 88 varieties and landraces to investigate its genomic and phenotypic diversity for seed traits, and to identify marker-trait associations (MTA). RESULTS Sequencing of restriction-site associated DNA fragments yielded 494 million reads and 2,412 high quality single nucleotide polymorphisms (SNPs). SNPs were used to study the diversity in the collection and perform a genome wide association study (GWAS). A genotypic diversity analysis separated accessions originating in Western Europe, Eastern Asia and Americas from accessions sampled in Southern Asia, Western Asia, and Africa. A Bayesian structure analysis reported four cryptic genetic groups, showing that landraces accessions had a significant level of admixture and that most of the improved proso millet materials clustered separately from landraces. The collection was highly diverse for seed traits, with color varying from white to dark brown and width spanning from 1.8 to 2.6 mm. A GWAS study for seed morphology traits identified 10 MTAs. In addition, we identified three MTAs for agronomic traits that were previously measured on the collection. CONCLUSION Using genomics and automated seed phenotyping, we elucidated phylogenetic relationships and seed diversity in a global millet collection. Overall, we identified 13 MTAs for key agronomic and seed traits indicating the presence of alleles with potential for application in proso breeding programs.
Collapse
Affiliation(s)
- Sameh Boukail
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mercy Macharia
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Mara Miculan
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy
| | - Alberto Masoni
- School of Agriculture, University of Florence, Florence, Italy
| | | | | | - Matteo Dell'Acqua
- Institute of Life Sciences, Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|