1
|
Zeng C, Xing R, Huang B, Cheng X, Shi W, Liu S. Phytoplankton in headwater streams: spatiotemporal patterns and underlying mechanisms. FRONTIERS IN PLANT SCIENCE 2023; 14:1276289. [PMID: 37941677 PMCID: PMC10628446 DOI: 10.3389/fpls.2023.1276289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/11/2023] [Indexed: 11/10/2023]
Abstract
Phytoplankton are key members of river ecosystems wherein they influence and regulate the health of the local environment. Headwater streams are subject to minimal human activity and serve as the sources of rivers, generally exhibiting minimal pollution and strong hydrodynamic forces. To date, the characteristics of phytoplankton communities in headwater streams have remained poorly understood. This study aims to address this knowledge gap by comparing phytoplankton communities in headwater streams with those in plain rivers. The results demonstrated that within similar watershed sizes, lower levels of spatiotemporal variability were observed with respect to phytoplankton community as compared to plain rivers. Lower nutrient levels and strong hydrodynamics contribute to phytoplankton growth limitation in these streams, thereby reducing the levels of spatiotemporal variation. However, these conditions additionally contribute to greater phytoplankton diversity and consequent succession towards Cyanophyta. Overall, these results provide new insights into the dynamics of headwater stream ecosystems and support efforts for their ecological conservation.
Collapse
Affiliation(s)
- Chenjun Zeng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| | - Ran Xing
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Bensheng Huang
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| | - Xiangju Cheng
- School of Civil Engineering and Transportation, South China University of Technology, Guangzhou, China
| | - Wenqing Shi
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, China
| | - Shufeng Liu
- Guangdong Research Institute of Water Resources and Hydropower, Guangzhou, China
| |
Collapse
|
2
|
Nagarajan D, Lee DJ, Varjani S, Lam SS, Allakhverdiev SI, Chang JS. Microalgae-based wastewater treatment - Microalgae-bacteria consortia, multi-omics approaches and algal stress response. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 845:157110. [PMID: 35787906 DOI: 10.1016/j.scitotenv.2022.157110] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/27/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Sustainable environmental management is one of the important aspects of sustainable development goals. Increasing amounts of wastewaters (WW) from exponential economic growth is a major challenge, and conventional treatment methods entail a huge carbon footprint in terms of energy use and GHG emissions. Microalgae-based WW treatment is a potential candidate for sustainable WW treatment. The nutrients which are otherwise unutilized in the conventional processes are recovered in the beneficial microalgal biomass. This review presents comprehensive information regarding the potential of microalgae as sustainable bioremediation agents. Microalgae-bacterial consortia play a critical role in synergistic nutrient removal, supported by the complex nutritional and metabolite exchange between microalgae and the associated bacteria. Design of effective microalgae-bacteria consortia either by screening or by recent technologies such as synthetic biology approaches are highly required for efficient WW treatment. Furthermore, this review discusses the crucial research gap in microalgal WW treatment - the application of a multi-omics platform for understanding microalgal response towards WW conditions and the design of effective microalgal or microalgae-bacteria consortia based on genetic information. While metagenomics helps in the identification and monitoring of the microbial community throughout the treatment process, transcriptomics, proteomics and metabolomics aid in studying the algal cellular response towards the nutrients and pollutants in WW. It has been established that the integration of microalgal processes into conventional WW treatment systems is feasible. In this direction, future research directions for microalgal WW treatment emphasize the need for identifying the niche in WW treatment, while highlighting the pilot sale plants in existence. Microalgae-based WW treatment could be a potential phase in the waste hierarchy of circular economy and sustainability, considering WWs are a rich secondary source of finite resources such as nitrogen and phosphorus.
Collapse
Affiliation(s)
- Dillirani Nagarajan
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan.
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Sustainability Cluster, School of Engineering, University of Petroleum & Energy Studies, Dehradun, Uttarakhand 248007, India
| | - Suleyman I Allakhverdiev
- K.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya Street 35, Moscow 127276, Russia
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-Li, Taiwan.
| |
Collapse
|
3
|
UV-B Irradiation Effect on Microalgae Performance in the Remediation of Effluent Derived from the Cigarette Butt Cleaning Process. PLANTS 2022; 11:plants11182356. [PMID: 36145757 PMCID: PMC9504614 DOI: 10.3390/plants11182356] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/29/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022]
Abstract
In this study, the potential of ultraviolet B (UV-B) radiation to alleviate the effects of pollutants in cigarette butt wastewater (CBW) was investigated using different Chlorella sorokiniana strains (F4, R1 and LG1). Microalgae were treated with UV-B (1.7 W m−2) for 3 days prior to their exposure to CBW and then incubated for 4 days in the absence or presence of UV-B. UV-B-untreated microalgae were used as the control. Comparative physiological responses, including photosynthetic pigments and non-enzymatic antioxidants, as well as nicotine and nicotyrine removal, were evaluated in 7-day cultures. UV-B treatments did not negatively impact algal chlorophyll or carotenoid production. UV-B acclimation was strain-dependent, correlating with native environment adaptations and genetic constitutions. UV-B as a pretreatment had long-term positive effects on non-enzymatic antioxidant capacity. However, LG1 needed more time to readjust the pro-oxidant/antioxidant balance, as it was the most UV-B-sensitive. Phenolic compounds played an important role in the antioxidant system response to UV-B, while flavonoids did not contribute to the total antioxidant capacity. Although cross-resistance between UV-B and CBW was observed in F4 and R1, only R1 showed nicotine/nicotyrine catabolism induction due to UV-B. Overall, the results suggest that UV-B activates defense pathways associated with resistance or tolerance to nicotine and nicotyrine.
Collapse
|
4
|
Chiellini C, Mariotti L, Huarancca Reyes T, de Arruda EJ, Fonseca GG, Guglielminetti L. Remediation Capacity of Different Microalgae in Effluents Derived from the Cigarette Butt Cleaning Process. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11131770. [PMID: 35807722 PMCID: PMC9269138 DOI: 10.3390/plants11131770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/23/2022] [Accepted: 06/30/2022] [Indexed: 05/17/2023]
Abstract
Microalgal-based remediation is an ecofriendly and cost-effective system for wastewater treatment. This study evaluated the capacity of microalgae in the remediation of wastewater from cleaning process of smoked cigarette butts (CB). At laboratory scale, six strains (one from the family Scenedesmaceae, two Chlamydomonas debaryana and three Chlorella sorokiniana) were exposed to different CB wastewater dilutions to identify toxicity levels reflected in the alteration of microalgal physiological status and to determine the optimal conditions for an effective removal of contaminants. CB wastewater could impact on microalgal chlorophyll and carotenoid production in a concentration-dependent manner. Moreover, the resistance and remediation capacity did not only depend on the microalgal strain, but also on the chemical characteristics of the organic pollutants. In detail, nicotine was the most resistant pollutant to removal by the microalgae tested and its low removal correlated with the inhibition of photosynthetic pigments affecting microalgal growth. Concerning the optimal conditions for an effective bioremediation, this study demonstrated that the Chlamydomonas strain named F2 showed the best removal capacity to organic pollutants at 5% CB wastewater (corresponding to 25 butts L−1 or 5 g CB L−1) maintaining its growth and photosynthetic pigments at control levels.
Collapse
Affiliation(s)
- Carolina Chiellini
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.M.); (L.G.)
- Institute of Agricultural Biology and Biotechnology, Italian National Research Council, 56124 Pisa, Italy
| | - Lorenzo Mariotti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.M.); (L.G.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, 56122 Pisa, Italy
| | - Thais Huarancca Reyes
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.M.); (L.G.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, 56122 Pisa, Italy
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
- Correspondence:
| | - Eduardo José de Arruda
- Faculty of Exact Sciences and Technology, Federal University of Grande Dourados, Dourados 79804-970, MS, Brazil;
| | - Gustavo Graciano Fonseca
- Faculty of Natural Resource Sciences, School of Business and Science, University of Akureyri, 600 Akureyri, Iceland;
| | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, 56124 Pisa, Italy; (C.C.); (L.M.); (L.G.)
- Centro di Ricerche Agro-Ambientali “E. Avanzi”, University of Pisa, 56122 Pisa, Italy
| |
Collapse
|
5
|
Macaluso M, Chiellini C, Ciurli A, Guglielminetti L, Najar B, Taglieri I, Sanmartin C, Bianchi A, Venturi F, Zinnai A. Application of Five Different Chlorella sp. Microalgal Strains for the Treatment of Vegetation Waters Derived from Unconventional Oil Extractions Enriched with Citrus Byproducts. Foods 2022; 11:foods11101398. [PMID: 35626969 PMCID: PMC9141023 DOI: 10.3390/foods11101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/06/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
The Mediterranean diet has, among its cornerstones, the use of olive oil for its nutraceutical and organoleptic properties. Despite the numerous merits, olive-oil mill wastewater (OMWW), which is generated by the olive-oil extraction process, is one of the most serious environmental pollutants in the Mediterranean countries. The polluting potential of OMWW is due to its high content of tannins, polyphenols, polyalcohols, pectins and lipids. In order to close the recovery cycle of a fortified citrus olive oils previously developed, we tested the ability of five microalgae of the Chlorella group (SEC_LI_ChL_1, CL_Sc, CL_Ch, FB and Idr) in lowering the percentage of total phenolic compounds in vegetation water. This was obtained with three different extraction processes (conventional, and lemon and orange peels) at three concentrations each (10%, 25% and 50%). The results showed that strains Idr, FB and CL_Sc from the Lake Massaciuccoli can tolerate vegetation water from conventional and lemon peel extractions up to 25%; these strains can also reduce the phenolic compounds within the tests. The application of microalgae for OMWW treatment represents an interesting opportunity as well as an eco-friendly low-cost solution to be developed within companies as a full-scale approach, which could be applied to obtain a fortified microalgal biomass to be employed in nutraceutical fields.
Collapse
Affiliation(s)
- Monica Macaluso
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Carolina Chiellini
- Italian National Research Council, Institute of Agricultural Biology and Biotechnology, Via Moruzzi 1, 56124 Pisa, Italy
| | - Adriana Ciurli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Lorenzo Guglielminetti
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Basma Najar
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Isabella Taglieri
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Chiara Sanmartin
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Alessandro Bianchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
| | - Francesca Venturi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Angela Zinnai
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 54126 Pisa, Italy
- Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
6
|
Chiellini C, Serra V, Gammuto L, Ciurli A, Longo V, Gabriele M. Evaluation of Nutraceutical Properties of Eleven Microalgal Strains Isolated from Different Freshwater Aquatic Environments: Perspectives for Their Application as Nutraceuticals. Foods 2022; 11:foods11050654. [PMID: 35267283 PMCID: PMC8909373 DOI: 10.3390/foods11050654] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/07/2022] [Accepted: 02/11/2022] [Indexed: 12/23/2022] Open
Abstract
The increasing global population and the simultaneous growing attention to natural, sustainable, and healthier products are driving the food industry towards research on alternative food sources. In this scenario, microalgae are gaining worldwide attention as "functional feedstocks" for foods, feeds, supplements, and nutraceutical formulations, being a source of high-value metabolites including polyphenols and other antioxidant compounds. In this work, eleven microalgal strains from freshwater environments were evaluated for their nutraceutical properties, focusing on photosynthetic pigments, total polyphenols, and flavonoid content, as well as in vitro antioxidant activities. Data helped to select those strains showing the most promising features for simultaneous massive growth and bioactive compound production. Results highlighted that the microalgae have variable values for both biochemical parameters and antioxidant activities, mainly depending on the solvents and applied treatment rather than on the isolation sources or the phylogenetic attribution. According to our results, the putative best candidates for massive cultivation under laboratory conditions for the simultaneous extraction of different molecules with nutraceutical potential are strains F1 (Scenedesmaceae), F3 (Chlamydomonas debariana), R1 (Chlorella sorokiniana), and C2 (Chlorella-like).
Collapse
Affiliation(s)
- Carolina Chiellini
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council, Via Moruzzi, 1, 56124 Pisa, Italy; (C.C.); (V.L.)
| | - Valentina Serra
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy; (V.S.); (L.G.)
| | - Leandro Gammuto
- Department of Biology, University of Pisa, Via A. Volta 4/6, 56126 Pisa, Italy; (V.S.); (L.G.)
| | - Adriana Ciurli
- Department of Agriculture, Food and Environment (DAFE), University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy;
| | - Vincenzo Longo
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council, Via Moruzzi, 1, 56124 Pisa, Italy; (C.C.); (V.L.)
| | - Morena Gabriele
- Institute of Agricultural Biology and Biotechnology (IBBA), Italian National Research Council, Via Moruzzi, 1, 56124 Pisa, Italy; (C.C.); (V.L.)
- Correspondence: ; Tel.: +39-050-6212752
| |
Collapse
|