1
|
Chen J. Mind the gap: Spatiotemporal patterns of airspace formation in duckweeds are regulated by hormones. PLANT PHYSIOLOGY 2024; 195:2480-2481. [PMID: 38635968 PMCID: PMC11288734 DOI: 10.1093/plphys/kiae222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 04/02/2024] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Affiliation(s)
- Jiawen Chen
- Assistant Features Editor, Plant Physiology, American Society of Plant Biologists
- Division of Crop Biotechnics, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
2
|
Islam T, Kalkar S, Tinker-Kulberg R, Ignatova T, Josephs EA. The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression. ACS Synth Biol 2024; 13:687-691. [PMID: 38127817 PMCID: PMC10877602 DOI: 10.1021/acssynbio.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Duckweeds (Lemnaceae) are aquatic nongrass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly uptake the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants─without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the "duckweed dip", represents a streamlined, "hands-off" tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed's potential as a powerhouse for plant synthetic biology.
Collapse
Affiliation(s)
- Tasmia Islam
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Swapna Kalkar
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Rachel Tinker-Kulberg
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Tetyana Ignatova
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, North Carolina 27401, United States
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, North Carolina 27401, United States
| |
Collapse
|
3
|
Islam T, Kalkar S, Tinker-Kulberg R, Ignatova T, Josephs EA. The "Duckweed Dip": Aquatic Spirodela polyrhiza Plants Can Efficiently Uptake Dissolved, DNA-Wrapped Carbon Nanotubes from Their Environment for Transient Gene Expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.21.554121. [PMID: 37662322 PMCID: PMC10473656 DOI: 10.1101/2023.08.21.554121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Duckweeds (Lemnaceae) are aquatic non-grass monocots that are the smallest and fastest-growing flowering plants in the world. While having simplified morphologies, relatively small genomes, and many other ideal traits for emerging applications in plant biotechnology, duckweeds have been largely overlooked in this era of synthetic biology. Here, we report that Greater Duckweed (Spirodela polyrhiza), when simply incubated in a solution containing plasmid-wrapped carbon nanotubes (DNA-CNTs), can directly up-take the DNA-CNTs from their growth media with high efficiency and that transgenes encoded within the plasmids are expressed by the plants-without the usual need for large doses of nanomaterials or agrobacterium to be directly infiltrated into plant tissue. This process, called the "duckweed dip", represents a streamlined, 'hands-off' tool for transgene delivery to a higher plant that we expect will enhance the throughput of duckweed engineering and help to realize duckweed's potential as a powerhouse for plant synthetic biology. (148 words).
Collapse
Affiliation(s)
- Tasmia Islam
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC. 27401
| | - Swapna Kalkar
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC. 27401
| | - Rachel Tinker-Kulberg
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC. 27401
| | - Tetyana Ignatova
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC. 27401
| | - Eric A. Josephs
- Department of Nanoscience, University of North Carolina at Greensboro, 2907 E. Gate City Blvd., Greensboro, NC. 27401
| |
Collapse
|
4
|
Harandi N, Vandenberghe B, Vankerschaver J, Depuydt S, Van Messem A. How to make sense of 3D representations for plant phenotyping: a compendium of processing and analysis techniques. PLANT METHODS 2023; 19:60. [PMID: 37353846 DOI: 10.1186/s13007-023-01031-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 05/19/2023] [Indexed: 06/25/2023]
Abstract
Computer vision technology is moving more and more towards a three-dimensional approach, and plant phenotyping is following this trend. However, despite its potential, the complexity of the analysis of 3D representations has been the main bottleneck hindering the wider deployment of 3D plant phenotyping. In this review we provide an overview of typical steps for the processing and analysis of 3D representations of plants, to offer potential users of 3D phenotyping a first gateway into its application, and to stimulate its further development. We focus on plant phenotyping applications where the goal is to measure characteristics of single plants or crop canopies on a small scale in research settings, as opposed to large scale crop monitoring in the field.
Collapse
Affiliation(s)
- Negin Harandi
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | | | - Joris Vankerschaver
- Center for Biosystems and Biotech Data Science, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, South Korea
- Department of Applied Mathematics, Computer Science and Statistics, Ghent University, Krijgslaan 281, S9, Ghent, Belgium
| | - Stephen Depuydt
- Erasmus Applied University of Sciences and Arts, Campus Kaai, Nijverheidskaai 170, Anderlecht, Belgium
| | - Arnout Van Messem
- Department of Mathematics, Université de Liège, Allée de la Découverte 12, Liège, Belgium.
| |
Collapse
|
5
|
López-Pozo M, Adams WW, Polutchko SK, Demmig-Adams B. Terrestrial and Floating Aquatic Plants Differ in Acclimation to Light Environment. PLANTS (BASEL, SWITZERLAND) 2023; 12:1928. [PMID: 37653846 PMCID: PMC10224479 DOI: 10.3390/plants12101928] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/02/2023] [Accepted: 05/06/2023] [Indexed: 09/02/2023]
Abstract
The ability of plants to respond to environmental fluctuations is supported by acclimatory adjustments in plant form and function that may require several days and development of a new leaf. We review adjustments in photosynthetic, photoprotective, and foliar vascular capacity in response to variation in light and temperature in terrestrial plants. The requirement for extensive acclimation to these environmental conditions in terrestrial plants is contrasted with an apparent lesser need for acclimation to different light environments, including rapid light fluctuations, in floating aquatic plants for the duckweed Lemna minor. Relevant features of L. minor include unusually high growth rates and photosynthetic capacities coupled with the ability to produce high levels of photoprotective xanthophylls across a wide range of growth light environments without compromising photosynthetic efficiency. These features also allow L. minor to maximize productivity and avoid problems during an abrupt experimental transfer of low-light-grown plants to high light. The contrasting responses of land plants and floating aquatic plants to the light environment further emphasize the need of land plants to, e.g., experience light fluctuations in their growth environment before they induce acclimatory adjustments that allow them to take full advantage of natural settings with such fluctuations.
Collapse
Affiliation(s)
- Marina López-Pozo
- Department of Plant Biology & Ecology, University of the Basque Country, 48940 Leioa, Spain
| | - William W. Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Stephanie K. Polutchko
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Barbara Demmig-Adams
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
6
|
Cox KL, Manchego J, Meyers BC, Czymmek KJ, Harkess A. Automated imaging of duckweed growth and development. PLANT DIRECT 2022; 6:e439. [PMID: 36186894 PMCID: PMC9510441 DOI: 10.1002/pld3.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 01/20/2022] [Accepted: 07/06/2022] [Indexed: 06/16/2023]
Abstract
Duckweeds are the smallest angiosperms, possessing a simple body architecture and highest rates of biomass accumulation. They can grow near-exponentially via clonal propagation. Understanding their reproductive biology, growth, and development is essential to unlock their potential for phytoremediation, carbon capture, and nutrition. However, there is a lack of non-laborious and convenient methods for spatially and temporally imaging an array of duckweed plants and growth conditions in the same experiment. We developed an automated microscopy approach to record time-lapse images of duckweed plants growing in 12-well cell culture plates. As a proof-of-concept experiment, we grew duckweed on semi-solid media with and without sucrose and monitored its effect on their growth over 3 days. Using the PlantCV toolkit, we quantified the thallus area of individual plantlets over time, and showed that L. minor grown on sucrose had an average growth rate four times higher than without sucrose. This method will serve as a blueprint to perform automated high-throughput growth assays for studying the development patterns of duckweeds from different species, genotypes, and conditions.
Collapse
Affiliation(s)
- Kevin L. Cox
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Howard Hughes Medical InstituteChevy ChaseMarylandUSA
| | | | - Blake C. Meyers
- Donald Danforth Plant Science CenterSt. LouisMissouriUSA
- Department of BiologyUniversity of MissouriColumbiaMissouriUSA
| | | | - Alex Harkess
- HudsonAlpha Institute for BiotechnologyHuntsvilleAlabamaUSA
- Department of Crop, Soil, and Environmental SciencesAuburn UniversityAuburnAlabamaUSA
| |
Collapse
|
7
|
Duncan KE, Czymmek KJ, Jiang N, Thies AC, Topp CN. X-ray microscopy enables multiscale high-resolution 3D imaging of plant cells, tissues, and organs. PLANT PHYSIOLOGY 2022; 188:831-845. [PMID: 34618094 PMCID: PMC8825331 DOI: 10.1093/plphys/kiab405] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 07/29/2021] [Indexed: 05/12/2023]
Abstract
Capturing complete internal anatomies of plant organs and tissues within their relevant morphological context remains a key challenge in plant science. While plant growth and development are inherently multiscale, conventional light, fluorescence, and electron microscopy platforms are typically limited to imaging of plant microstructure from small flat samples that lack a direct spatial context to, and represent only a small portion of, the relevant plant macrostructures. We demonstrate technical advances with a lab-based X-ray microscope (XRM) that bridge the imaging gap by providing multiscale high-resolution three-dimensional (3D) volumes of intact plant samples from the cell to the whole plant level. Serial imaging of a single sample is shown to provide sub-micron 3D volumes co-registered with lower magnification scans for explicit contextual reference. High-quality 3D volume data from our enhanced methods facilitate sophisticated and effective computational segmentation. Advances in sample preparation make multimodal correlative imaging workflows possible, where a single resin-embedded plant sample is scanned via XRM to generate a 3D cell-level map, and then used to identify and zoom in on sub-cellular regions of interest for high-resolution scanning electron microscopy. In total, we present the methodologies for use of XRM in the multiscale and multimodal analysis of 3D plant features using numerous economically and scientifically important plant systems.
Collapse
Affiliation(s)
- Keith E Duncan
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Kirk J Czymmek
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | - Ni Jiang
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
| | | | - Christopher N Topp
- Donald Danforth Plant Science Center, St Louis, Missouri 63132, USA
- Author for communication:
| |
Collapse
|
8
|
Riddled with holes: Understanding air space formation in plant leaves. PLoS Biol 2021; 19:e3001475. [PMID: 34871299 PMCID: PMC8675916 DOI: 10.1371/journal.pbio.3001475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/16/2021] [Indexed: 11/19/2022] Open
Abstract
Plants use energy from sunlight to transform carbon dioxide from the air into complex organic molecules, ultimately producing much of the food we eat. To make this complex chemistry more efficient, plant leaves are intricately constructed in 3 dimensions: They are flat to maximise light capture and contain extensive internal air spaces to increase gas exchange for photosynthesis. Many years of work has built up an understanding of how leaves form flat blades, but the molecular mechanisms that control air space formation are poorly understood. Here, I review our current understanding of air space formation and outline how recent advances can be harnessed to answer key questions and take the field forward. Increasing our understanding of plant air spaces will not only allow us to understand a fundamental aspect of plant development, but also unlock the potential to engineer the internal structure of crops to make them more efficient at photosynthesis with lower water requirements and more resilient in the face of a changing environment. Leaves are interwoven with large air spaces to increase the efficiency of photosynthesis; however, how these air spaces form and how different patterns have evolved is almost unknown. This Unsolved Mystery article discusses the existing evidence and poses new avenues of research to answer this question.
Collapse
|
9
|
Acosta K, Appenroth KJ, Borisjuk L, Edelman M, Heinig U, Jansen MAK, Oyama T, Pasaribu B, Schubert I, Sorrels S, Sree KS, Xu S, Michael TP, Lam E. Return of the Lemnaceae: duckweed as a model plant system in the genomics and postgenomics era. THE PLANT CELL 2021; 33:3207-3234. [PMID: 34273173 PMCID: PMC8505876 DOI: 10.1093/plcell/koab189] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 06/18/2021] [Indexed: 05/05/2023]
Abstract
The aquatic Lemnaceae family, commonly called duckweed, comprises some of the smallest and fastest growing angiosperms known on Earth. Their tiny size, rapid growth by clonal propagation, and facile uptake of labeled compounds from the media were attractive features that made them a well-known model for plant biology from 1950 to 1990. Interest in duckweed has steadily regained momentum over the past decade, driven in part by the growing need to identify alternative plants from traditional agricultural crops that can help tackle urgent societal challenges, such as climate change and rapid population expansion. Propelled by rapid advances in genomic technologies, recent studies with duckweed again highlight the potential of these small plants to enable discoveries in diverse fields from ecology to chronobiology. Building on established community resources, duckweed is reemerging as a platform to study plant processes at the systems level and to translate knowledge gained for field deployment to address some of society's pressing needs. This review details the anatomy, development, physiology, and molecular characteristics of the Lemnaceae to introduce them to the broader plant research community. We highlight recent research enabled by Lemnaceae to demonstrate how these plants can be used for quantitative studies of complex processes and for revealing potentially novel strategies in plant defense and genome maintenance.
Collapse
Affiliation(s)
- Kenneth Acosta
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Klaus J Appenroth
- Plant Physiology, Matthias Schleiden Institute, University of Jena, Jena 07737, Germany
| | - Ljudmilla Borisjuk
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Marvin Edelman
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Uwe Heinig
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Marcel A K Jansen
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, University College Cork, Cork T23 TK30, Ireland
| | - Tokitaka Oyama
- Department of Botany, Graduate School of Science, Kyoto University, Kyoto 606-8502, Japan
| | - Buntora Pasaribu
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Ingo Schubert
- The Leibniz Institute of Plant Genetics and Crop Plant Research, Gatersleben D-06466, Germany
| | - Shawn Sorrels
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| | - K Sowjanya Sree
- Department of Environmental Science, Central University of Kerala, Periye 671320, India
| | - Shuqing Xu
- Institute for Evolution and Biodiversity, University of Münster, Münster 48149, Germany
| | - Todd P Michael
- Plant Molecular and Cellular Biology Laboratory, The Salk Institute of Biological Studies, La Jolla, California 92037, USA
| | - Eric Lam
- Department of Plant Biology, Rutgers the State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|