1
|
Kumar M, He X, Navathe S, Kamble U, Patial M, Singh PK. Identification of resistance sources and genomic regions regulating Septoria tritici blotch resistance in South Asian bread wheat germplasm. THE PLANT GENOME 2025; 18:e20531. [PMID: 39601058 PMCID: PMC11726422 DOI: 10.1002/tpg2.20531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/10/2024] [Accepted: 10/13/2024] [Indexed: 11/29/2024]
Abstract
The Septoria tritici blotch (STB) [Zymoseptoria tritici (Desm.)] of wheat (Triticum aestivum L.) is characterized by its polycyclic and hemibiotrophic nature. It is one of the most dangerous diseases affecting wheat production worldwide. Durable resistance is largely decided by the combined effect of several quantitative trait loci (QTLs) having a minor effect. Currently, STB is not important in South Asia. However, STB expanding and wider adaptability, changing climatic conditions, and agronomic practices can create a situation of concern. Therefore, dissection of the genetic architecture of adult-plant resistance with genome-wide association mapping and selection of resistant sources for adult plant STB resistance were carried out on a panel of South Asian germplasm. We discovered the 91 quantitative trait nucleotides (QTNs) associated with STB resistance; 23 QTNs were repetitive across the different years and models. Many of these QTNs could differentiate the mapping panel into resistant versus susceptible groups and were linked to candidate genes related to disease resistance functions within linkage disequilibrium blocks. The repetitive QTNs, namely, Q.CIM.stb.2DL.2, Q.CIM.stb_dh.2DL.3, Q.CIM.stb.2AL.5, and Q.CIM.stb.7BL.1, may be novel due to the absence of co-localization of previously reported QTLs, meta-quantitative trait loci, and STB genes. There was a perfect negative correlation between the stacking of favorable alleles and STB susceptibility, and STB resistance response was improved by ∼50% with the stacking of ≥60% favorable alleles. The genotypes, namely, CIM20, CIM56, CIM57, CIM18, CIM44, WK2395, and K1317, could be used as resistant sources in wheat breeding programs. Therefore, this study could aid in designing the breeding programs for STB resistance before the onset of the alarming situation of STB in South Asia.
Collapse
Affiliation(s)
- Manjeet Kumar
- ICAR‐Indian Agricultural Research InstituteNew DelhiIndia
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) ApedoMexico DFMexico
| | | | - Umesh Kamble
- ICAR‐Indian Institute of Wheat and Barley ResearchKarnalIndia
| | - Madhu Patial
- ICAR‐Indian Agricultural Research Institute, Regional StationShimlaIndia
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) ApedoMexico DFMexico
| |
Collapse
|
2
|
Thauvin JN, Gélisse S, Cambon F, Langin T, Marcel TC, Saintenac C. The genetic architecture of resistance to septoria tritici blotch in French wheat cultivars. BMC PLANT BIOLOGY 2024; 24:1212. [PMID: 39701973 DOI: 10.1186/s12870-024-05898-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) is one of the most damaging wheat diseases worldwide, and the development of resistant cultivars is of paramount importance for sustainable crop management. However, the genetic basis of the resistance present in elite wheat cultivars remains largely unknown, which limits the implementation of this strategy. A collection of 285 wheat cultivars originating mostly from France was challenged with ten Zymoseptoria tritici isolates at the seedling stage. The collection was further evaluated in seven field trials across France using artificial inoculation. RESULTS Genome-wide association study resulted in the detection of 57 wheat QTL, among which 40 were detected at the seedling stage. Three quarters of these QTL were in genomic regions previously reported for to confer resistance to Z. tritici, but 10 QTL are novel and may be of special interest as new sources of resistance. Some QTL colocalise with major Stb resistance genes, suggesting their presence in the French elite winter wheat germplasm. Among them, the three QTL with the strongest effect colocalize with Stb6, Stb9 and Stb18. There was minimal overlap between the QTL detected at the seedling and adult plant stages, with only 1 out of 20 seedling QTL also being detected in field trials inoculated with the same isolate. This suggests that different resistance genes are involved at the seedling and adult plant stages. CONCLUSION This work reveals the highly complex genetic architecture of French wheat resistance to STB and provides relatively small QTL intervals, which will be valuable for identifying the underlying causative genes and for marker-assisted selection.
Collapse
Affiliation(s)
- Jean-Noël Thauvin
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
- Present address: RAGT Semences, Druelle, 12510, France
| | | | - Florence Cambon
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
| | - Thierry Langin
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France
| | | | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, UMR GDEC, Clermont-Ferrand, France.
| |
Collapse
|
3
|
Patial M, Navathe S, He X, Kamble U, Kumar M, Joshi AK, Singh PK. Novel resistance loci for quantitative resistance to Septoria tritici blotch in Asian wheat (Triticum aestivum) via genome-wide association study. BMC PLANT BIOLOGY 2024; 24:846. [PMID: 39251916 PMCID: PMC11382471 DOI: 10.1186/s12870-024-05547-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/26/2024] [Indexed: 09/11/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) disease causes yield losses of up to 50 per cent in susceptible wheat cultivars and can reduce wheat production. In this study, genomic architecture for adult-plant STB resistance in a Septoria Association Mapping Panel (SAMP) having 181 accessions and genomic regions governing STB resistance in a South Asian wheat panel were looked for. RESULTS Field experiments during the period from 2019 to 2021 revealed those certain accessions, namely BGD52 (CHIR7/ANB//CHIR1), BGD54 (CHIR7/ANB//CHIR1), IND92 (WH 1218), IND8 (DBW 168), and IND75 (PBW 800), exhibited a high level of resistance. Genetic analysis revealed the presence of 21 stable quantitative trait nucleotides (QTNs) associated with resistance to STB (Septoria tritici blotch) on all wheat chromosomes, except for 2D, 3A, 3D, 4A, 4D, 5D, 6B, 6D, and 7A. These QTNs were predominantly located in chromosome regions previously identified as associated with STB resistance. Three Quantitative Trait Loci (QTNs) were found to have significant phenotypic effects in field evaluations. These QTNs are Q.STB.5A.1, Q.STB.5B.1, and Q.STB.5B.3. Furthermore, it is possible that the QTNs located on chromosomes 1A (Q.STB.1A.1), 2A (Q.STB_DH.2A.1, Q.STB.2A.3), 2B (Q.STB.2B.4), 5A (Q.STB.5A.1, Q.STB.5A.2), and 7B (Q.STB.7B.2) could potentially be new genetic regions associated with resistance. CONCLUSION Our findings demonstrate the importance of Asian bread wheat as a source of STB resistance alleles and novel stable QTNs for wheat breeding programs aiming to develop long-lasting and wide-ranging resistance to Zymoseptoria tritici in wheat cultivars.
Collapse
Affiliation(s)
- Madhu Patial
- ICAR-Indian Agricultural Research Institute, Regional Station, Shimla, 171004, India
| | - Sudhir Navathe
- Agharkar Research Institute, G.G. Agharkar Road, Pune, 411004, India
| | - Xinyao He
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico
| | - Umesh Kamble
- ICAR-Indian Institute of Wheat and Barley Research, Karnal, 132001, India
| | - Manjeet Kumar
- ICAR-Indian Agricultural Research Institute, Pusa, New Delhi, 110012, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia, NASC Complex, G-2, B-Block, New Delhi, 110012, India
| | - Pawan Kumar Singh
- International Maize and Wheat Improvement Centre (CIMMYT) Apdo, Postal 6-641, Mexico City, Mexico.
| |
Collapse
|
4
|
Radecka-Janusik M, Piechota U, Piaskowska D, Słowacki P, Bartosiak S, Czembor P. Haplotype-based association mapping of genomic regions associated with Zymoseptoria tritici resistance using 217 diverse wheat genotypes. BMC PLANT BIOLOGY 2024; 24:682. [PMID: 39020304 PMCID: PMC11256644 DOI: 10.1186/s12870-024-05400-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 07/09/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND Septoria tritici blotch (STB) is considered to be one of the most destructive foliar wheat diseases and is caused by Zymoseptoria tritici. The yield losses are severe and in Northwestern Europe can reach up to 50%. The efficacy of fungicides is diminishing due to changes in the genetic structure of the pathogen. Therefore, resistance breeding is the most effective strategy of disease management. Recently, genome-wide association studies (GWAS) have become more popular due to their robustness in dissecting complex traits, including STB resistance in wheat. This was made possible by the use of large mapping populations and new sequencing technologies. High-resolution mapping benefits from historical recombination and greater allele numbers in GWAS. RESULTS In our study, 217 wheat genotypes of diverse origin were phenotyped against five Z. tritici isolates (IPO323, IPO88004, IPO92004, IPO86036 and St1-03) and genotyped on the DArTseq platform. In polytunnel tests two disease parameters were evaluated: the percentage of leaf area covered by necrotic lesions (NEC) and the percentage of leaf area covered by lesions bearing pycnidia (PYC). The disease escape parameters heading date (Hd) and plant height (Ht) were also measured. Pearson's correlation showed a positive effect between disease parameters, providing additional information. The Structure analysis indicated four subpopulations which included from 28 (subpopulation 2) to 79 genotypes (subpopulation 3). All of the subpopulations showed a relatively high degree of admixture, which ranged from 60% of genotypes with less than 80% of proportions of the genome attributed to assigned subpopulation for group 2 to 85% for group 4. Haplotype-based GWAS analysis allowed us to identify 27 haploblocks (HBs) significantly associated with analysed traits with a p-value above the genome-wide significance threshold (5%, which was -log10(p) > 3.64) and spread across the wheat genome. The explained phenotypic variation of identified significant HBs ranged from 0.2% to 21.5%. The results of the analysis showed that four haplotypes (HTs) associated with disease parameters cause a reduction in the level of leaf coverage by necrosis and pycnidia, namely: Chr3A_HB98_HT2, Chr5B_HB47_HT1, Chr7B_HB36_HT1 and Chr5D_HB10_HT3. CONCLUSIONS GWAS analysis enabled us to identify four significant chromosomal regions associated with a reduction in STB disease parameters. The list of valuable HBs and wheat varieties possessing them provides promising material for further molecular analysis of resistance loci and development of breeding programmes.
Collapse
Affiliation(s)
- Magdalena Radecka-Janusik
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Urszula Piechota
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Dominika Piaskowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Piotr Słowacki
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Sławomir Bartosiak
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland
| | - Paweł Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Radzików, Błonie, 05-870, Poland.
| |
Collapse
|
5
|
Qutb AM, Cambon F, McDonald MC, Saintenac C, Kettles GJ. The Egyptian wheat cultivar Gemmeiza-12 is a source of resistance against the fungus Zymoseptoria tritici. BMC PLANT BIOLOGY 2024; 24:248. [PMID: 38580955 PMCID: PMC10996218 DOI: 10.1186/s12870-024-04930-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/19/2024] [Indexed: 04/07/2024]
Abstract
BACKGROUND Wheat is one of the world's most important cereal crops. However, the fungal pathogen Zymoseptoria tritici can cause disease epidemics, leading to reduced yields. With climate change and development of new agricultural areas with suitable environments, Z. tritici may advance into geographical areas previously unaffected by this pathogen. It is currently unknown how Egyptian wheat will perform in the face of this incoming threat. This project aimed to assess the resistance of Egyptian wheat germplasm to Z. tritici, to identify cultivars with high levels of resistance and characterise the mechanism(s) of resistance present in these cultivars. RESULTS Eighteen Egyptian wheat cultivars were screened against two Z. tritici model isolates and exhibited a wide spectrum of responses. This ranged from resistance to complete susceptibility to one or both isolates tested. The most highly resistant cultivars from the initial screen were then tested under two environmental conditions against modern UK field isolates. Disease levels under UK-like conditions were higher, however, symptom development on the cultivar Gemmeiza-12 was noticeably slower than on other Egyptian wheats. The robustness of the resistance shown by Gemmeiza-12 was confirmed in experiments mimicking Egyptian environmental conditions, where degree of Z. tritici infection was lower. The Kompetitive allele-specific PCR (KASP) diagnostic assay suggested the presence of an Stb6 resistant allele in several Egyptian wheats including Gemmeiza-12. Infection assays using the IPO323 WT and IPO323ΔAvrStb6 mutant confirmed the presence of Stb6 in several Egyptian cultivars including Gemmeiza-12. Confocal fluorescence microscopy demonstrated that growth of the IPO323 strain is blocked at the point of stomatal penetration on Gemmeiza-12, consistent with previous reports of Stb gene mediated resistance. In addition to this R-gene mediated resistance, IPO323 spores showed lower adherence to leaves of Gemmeiza-12 compared to UK wheat varieties, suggesting other aspects of leaf physiology may also contribute to the resistance phenotype of this cultivar. CONCLUSION These results indicate that Gemmeiza-12 will be useful in future breeding programs where improved resistance to Z. tritici is a priority.
Collapse
Affiliation(s)
- Abdelrahman M Qutb
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- Department of Agricultural Botany, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Florence Cambon
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Megan C McDonald
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Cyrille Saintenac
- Université Clermont Auvergne, INRAE, GDEC, Clermont-Ferrand, 63000, France
| | - Graeme J Kettles
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
6
|
Cyplik A, Piaskowska D, Czembor P, Bocianowski J. The use of weighted multiple linear regression to estimate QTL × QTL × QTL interaction effects of winter wheat (Triticum aestivum L.) doubled-haploid lines. J Appl Genet 2023; 64:679-693. [PMID: 37878169 PMCID: PMC10632291 DOI: 10.1007/s13353-023-00795-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/25/2023] [Accepted: 10/04/2023] [Indexed: 10/26/2023]
Abstract
Knowledge of the magnitude of gene effects and their interactions, their nature, and contribution to determining quantitative traits is very important in conducting an effective breeding program. In traditional breeding, information on the parameter related to additive gene effect and additive-additive interaction (epistasis) and higher-order additive interactions would be useful. Although commonly overlooked in studies, higher-order interactions have a significant impact on phenotypic traits. Failure to account for the effect of triplet interactions in quantitative genetics can significantly underestimate additive QTL effects. Understanding the genetic architecture of quantitative traits is a major challenge in the post-genomic era, especially for quantitative trait locus (QTL) effects, QTL-QTL interactions, and QTL-QTL-QTL interactions. This paper proposes using weighted multiple linear regression to estimate the effects of triple interaction (additive-additive-additive) quantitative trait loci (QTL-QTL-QTL). The material for the study consisted of 126 doubled haploid lines of winter wheat (Mandub × Begra cross). The lines were analyzed for 18 traits, including percentage of necrosis leaf area, percentage of leaf area covered by pycnidia, heading data, and height. The number of genes (the number of effective factors) was lower than the number of QTLs for nine traits, higher for four traits and equal for five traits. The number of triples for unweighted regression ranged from 0 to 9, while for weighted regression, it ranged from 0 to 13. The total aaagu effect ranged from - 14.74 to 15.61, while aaagw ranged from - 23.39 to 21.65. The number of detected threes using weighted regression was higher for two traits and lower for four traits. Forty-nine statistically significant threes of the additive-by-additive-by-additive interaction effects were observed. The QTL most frequently occurring in threes was 4407404 (9 times). The use of weighted regression improved (in absolute value) the assessment of QTL-QTL-QTL interaction effects compared to the assessment based on unweighted regression. The coefficients of determination for the weighted regression model were higher, ranging from 0.8 to 15.5%, than for the unweighted regression. Based on the results, it can be concluded that the QTL-QTL-QTL triple interaction had a significant effect on the expression of quantitative traits. The use of weighted multiple linear regression proved to be a useful statistical tool for estimating additive-additive-additive (aaa) interaction effects. The weighted regression also provided results closer to phenotypic evaluations than estimator values obtained using unweighted regression, which is closer to the true values.
Collapse
Affiliation(s)
- Adrian Cyplik
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland
| | - Dominika Piaskowska
- Plant Breeding and Acclimatization Institute - National Research Institute, Department of Applied Biology, Radzików, 05-870, Błonie, Poland
| | - Paweł Czembor
- Plant Breeding and Acclimatization Institute - National Research Institute, Department of Applied Biology, Radzików, 05-870, Błonie, Poland
| | - Jan Bocianowski
- Department of Mathematical and Statistical Methods, Poznań University of Life Sciences, Wojska Polskiego 28, 60-637, Poznań, Poland.
| |
Collapse
|
7
|
Alomari DZ, Schierenbeck M, Alqudah AM, Alqahtani MD, Wagner S, Rolletschek H, Borisjuk L, Röder MS. Wheat Grains as a Sustainable Source of Protein for Health. Nutrients 2023; 15:4398. [PMID: 37892473 PMCID: PMC10609835 DOI: 10.3390/nu15204398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
Protein deficiency is recognized among the major global health issues with an underestimation of its importance. Genetic biofortification is a cost-effective and sustainable strategy to overcome global protein malnutrition. This study was designed to focus on protein-dense grains of wheat (Triticum aestivum L.) and identify the genes governing grain protein content (GPC) that improve end-use quality and in turn human health. Genome-wide association was applied using the 90k iSELECT Infinium and 35k Affymetrix arrays with GPC quantified by using a proteomic-based technique in 369 wheat genotypes over three field-year trials. The results showed significant natural variation among bread wheat genotypes that led to detecting 54 significant quantitative trait nucleotides (QTNs) surpassing the false discovery rate (FDR) threshold. These QTNs showed contrasting effects on GPC ranging from -0.50 to +0.54% that can be used for protein content improvement. Further bioinformatics analyses reported that these QTNs are genomically linked with 35 candidate genes showing high expression during grain development. The putative candidate genes have functions in the binding, remobilization, or transport of protein. For instance, the promising QTN AX-94727470 on chromosome 6B increases GPC by +0.47% and is physically located inside the gene TraesCS6B02G384500 annotated as Trehalose 6-phosphate phosphatase (T6P), which can be employed to improve grain protein quality. Our findings are valuable for the enhancement of protein content and end-use quality in one of the major daily food resources that ultimately improve human nutrition.
Collapse
Affiliation(s)
- Dalia Z. Alomari
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
| | - Matías Schierenbeck
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
- CONICET CCT La Plata, La Plata 1900, Buenos Aires, Argentina
| | - Ahmad M. Alqudah
- Biological Science Program, Department of Biological and Environmental Sciences, College of Art and Science, Qatar University, Doha P.O. Box 2713, Qatar;
| | - Mashael Daghash Alqahtani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia;
| | - Steffen Wagner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Hardy Rolletschek
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| | - Marion S. Röder
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstraße 3, OT Gatersleben, D-06466 Seeland, Germany; (S.W.); (H.R.); (L.B.); (M.S.R.)
| |
Collapse
|
8
|
Zakieh M, Alemu A, Henriksson T, Pareek N, Singh PK, Chawade A. Exploring GWAS and genomic prediction to improve Septoria tritici blotch resistance in wheat. Sci Rep 2023; 13:15651. [PMID: 37730954 PMCID: PMC10511425 DOI: 10.1038/s41598-023-42856-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/15/2023] [Indexed: 09/22/2023] Open
Abstract
Septoria tritici blotch (STB) is a destructive foliar diseases threatening wheat grain yield. Wheat breeding for STB disease resistance has been identified as the most sustainable and environment-friendly approach. In this work, a panel of 316 winter wheat breeding lines from a commercial breeding program were evaluated for STB resistance at the seedling stage under controlled conditions followed by genome-wide association study (GWAS) and genomic prediction (GP). The study revealed a significant genotypic variation for STB seedling resistance, while disease severity scores exhibited a normal frequency distribution. Moreover, we calculated a broad-sense heritability of 0.62 for the trait. Nine single- and multi-locus GWAS models identified 24 marker-trait associations grouped into 20 quantitative trait loci (QTLs) for STB seedling-stage resistance. The seven QTLs located on chromosomes 1B, 2A, 2B, 5B (two), 7A, and 7D are reported for the first time and could potentially be novel. The GP cross-validation analysis in the RR-BLUP model estimated the genomic-estimated breeding values (GEBVs) of STB resistance with a prediction accuracy of 0.49. Meanwhile, the GWAS assisted wRR-BLUP model improved the accuracy to 0.58. The identified QTLs can be used for marker-assisted backcrossing against STB in winter wheat. Moreover, the higher prediction accuracy recorded from the GWAS-assisted GP analysis implies its power to successfully select superior candidate lines based on their GEBVs for STB resistance.
Collapse
Affiliation(s)
- Mustafa Zakieh
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
| | - Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden
| | | | - Nidhi Pareek
- Department of Microbiology, School of Life Sciences, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305801, India
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, 23422, Lomma, Sweden.
| |
Collapse
|
9
|
Yang N, Ovenden B, Baxter B, McDonald MC, Solomon PS, Milgate A. Multi-stage resistance to Zymoseptoria tritici revealed by GWAS in an Australian bread wheat diversity panel. FRONTIERS IN PLANT SCIENCE 2022; 13:990915. [PMID: 36352863 PMCID: PMC9637935 DOI: 10.3389/fpls.2022.990915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Septoria tritici blotch (STB) has been ranked the third most important wheat disease in the world, threatening a large area of wheat production. Although major genes play an important role in the protection against Zymoseptoria tritici infection, the lifespan of their resistance unfortunately is very short in modern wheat production systems. Combinations of quantitative resistance with minor effects, therefore, are believed to have prolonged and more durable resistance to Z. tritici. In this study, new quantitative trait loci (QTLs) were identified that are responsible for seedling-stage resistance and adult-plant stage resistance (APR). More importantly was the characterisation of a previously unidentified QTL that can provide resistance during different stages of plant growth or multi-stage resistance (MSR). At the seedling stage, we discovered a new isolate-specific QTL, QSt.wai.1A.1. At the adult-plant stage, the new QTL QStb.wai.6A.2 provided stable and consistent APR in multiple sites and years, while the QTL QStb.wai.7A.2 was highlighted to have MSR. The stacking of multiple favourable MSR alleles was found to improve resistance to Z. tritici by up to 40%.
Collapse
Affiliation(s)
- Nannan Yang
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Ben Ovenden
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Brad Baxter
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Megan C. McDonald
- University of Birmingham, School of Biosciences, Birmingham, West Midlands, United Kingdom
| | - Peter S. Solomon
- Division of Plant Sciences, Research School of Biology, The Australian National University, Canberra, ACT, Australia
| | - Andrew Milgate
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| |
Collapse
|
10
|
Mahboubi M, Talebi R, Mehrabi R, Mohammad Naji A, Maccaferri M, Kema GHJ. Genetic analysis of novel resistance sources and genome-wide association mapping identified novel QTLs for resistance to Zymoseptoria tritici, the causal agent of septoria tritici blotch in wheat. J Appl Genet 2022; 63:429-445. [PMID: 35482212 DOI: 10.1007/s13353-022-00696-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 11/29/2022]
Abstract
Septoria tritici blotch (STB) caused by Zymoseptoria tritici is one of the most important foliar diseases of wheat causing significant yield losses worldwide. In this study, a panel of bread wheat genotypes comprised 185 globally diverse genotypes were tested against 10 Z. tritici isolates at the seedling stage. Genome-wide association study (GWAS) using high-throughput DArTseq markers was performed and further gene expression analysis of significant markers trait association (MTAs) associated with resistance to STB was analyzed. Disease severity level showed significant differences among wheat genotypes for resistance to different Z. tritici isolates. We found novel landrace genotypes that showed highly resistance spectra to all tested isolates. GWAS analysis resulted in 19 quantitative trait loci (QTLs) for resistance to STB that were located on 14 chromosomes. Overall, 14 QTLs were overlapped with previously known QTLs or resistance genes, as well as five potentially novel QTLs on chromosomes 1A, 4A, 5B, 5D, and 6D. Identified novel resistance sources and also novel QTLs for resistance to different Z. tritici isolates can be used for gene pyramiding and development of durable resistance cultivars in future wheat breeding programs.
Collapse
Affiliation(s)
- Mozghan Mahboubi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran
| | - Reza Talebi
- Department of Agronomy and Plant Breeding, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran. .,Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands.
| | - Rahim Mehrabi
- Keygene N.V, P.O. Box 216, 6700 AE, Wageningen, Netherlands. .,Department of Biotechnology, College of Agriculture, Isfahan University of Technology, POBox 8415683111, Isfahan, Iran.
| | - Amir Mohammad Naji
- Department of Agronomy and Plant Breeding, Faculty of Agriculture, Shahed University, Tehran, Iran
| | - Marco Maccaferri
- Department of Agricultural and Food Sciences, University of Bologna, Bologna, Italy
| | - Gert H J Kema
- Laboratory of Phytopathology, Wageningen University and Research, Wageningen, The Netherlands
| |
Collapse
|