1
|
Ochola CA, Ngugi MP, Nyaboga EN, Njarui DMG. Morpho-physiological and yield traits for selection of drought tolerant Urochloa grass ecotypes. AOB PLANTS 2024; 16:plae034. [PMID: 38948321 PMCID: PMC11212069 DOI: 10.1093/aobpla/plae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 06/04/2024] [Indexed: 07/02/2024]
Abstract
Drought has become more recurrent and causes a substantial decline in forage yields leading to strain on feed resources for livestock production. This has intensified the search for drought-tolerant forages to promote sustainable livestock production. The objective of this study was to identify drought-tolerant Urochloa grasses and to discern their morpho-physiological and yield traits to water stress as well as the relationship between these traits and indices of drought resistance. The results showed that the ecotypes, water regimes and their interaction significantly influenced all the studied morpho-physiological and yield traits. There was a significant decrease in plant height, number of leaves and tillers, dry matter yield, relative water content, photosystem II and efficiency of photosystem II with an increase in non-photochemical quenching. The principal component analysis revealed that the performance of Urochloa grass ecotypes was different under water sufficient (WS) and water deficit conditions. Drought tolerance indicators (mean productivity, geometric mean productivity, tolerance index and stress tolerance index) were most effective in identifying Urochloa ecotypes with high biomass production under both water deficient and WS conditions. Ecotypes K17, K7, Kisii, Busia and Kakamega were the most drought tolerant, Basilisk, K6, K10, K19 and Toledo were moderately tolerant whereas, CIAT6385, CIAT16449, K13, K5 and K9 were drought sensitive. The five drought-tolerant Urochloa ecotypes should be tested for sustainable biomass production under field conditions and used in breeding programmes to develop high-yielding drought-tolerant varieties.
Collapse
Affiliation(s)
- Celestine Anyango Ochola
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Mathew Pierro Ngugi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O Box 43844-00100, Nairobi, Kenya
| | - Evans N Nyaboga
- Department of Biochemistry, University of Nairobi, P.O Box 30197-00100, Nairobi, Kenya
| | - Donald M G Njarui
- Kenya Agricultural and Livestock Research Organization (KALRO)-Kabete, P.O Box 14733-00800, Nairobi, Kenya
| |
Collapse
|
2
|
Dutta R, Jayalakshmi K, Kumar S, Radhakrishna A, Manjunathagowda DC, Sharath MN, Gurav VS, Mahajan V. Insights into the cumulative effect of Colletotrichum gloeosporioides and Fusarium acutatum causing anthracnose-twister disease complex of onion. Sci Rep 2024; 14:9374. [PMID: 38653777 DOI: 10.1038/s41598-024-59822-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
Colletotrichum is an important plant pathogenic fungi that causes anthracnose/-twister disease in onion. This disease was prevalent in the monsoon season from August to November months and the symptoms were observed in most of the fields. This study aimed to investigate the pathogenicity and cumulative effect, if any of Colletotrichum gloeosporioides and Fusarium acutatum. The pot experiment was laid out to identify the cause responsible for inciting anthracnose-twister disease, whether the Colletotrichum or Fusarium or both, or the interaction of pathogens and GA3. The results of the pathogenicity test confirmed that C. gloeosporioides and F. acutatum are both pathogenic. C. gloeosporioides caused twisting symptoms independently, while F.acutatum independently caused only neck elongation. The independent application of GA3 did not produce any symptoms, however, increased the plant height. The combined treatment of C. gloeosporioides and F. acutatum caused twisting, which enhanced upon interaction with GA3 application giving synergistic effect. The acervuli were found in lesions infected with C. gloeosporioides after 8 days of inoculation on the neck and leaf blades. Symptoms were not observed in untreated control plants. Koch's postulates were confirmed by reisolating the same pathogens from the infected plants.
Collapse
Affiliation(s)
- Ram Dutta
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India.
| | - K Jayalakshmi
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India.
| | - Satish Kumar
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India.
| | - A Radhakrishna
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India.
| | | | - M N Sharath
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Vishal S Gurav
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Vijay Mahajan
- ICAR-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| |
Collapse
|
3
|
Abd-El-Aty MS, Kamara MM, Elgamal WH, Mesbah MI, Abomarzoka EA, Alwutayd KM, Mansour E, Ben Abdelmalek I, Behiry SI, Almoshadak AS, Abdelaal K. Exogenous application of nano-silicon, potassium sulfate, or proline enhances physiological parameters, antioxidant enzyme activities, and agronomic traits of diverse rice genotypes under water deficit conditions. Heliyon 2024; 10:e26077. [PMID: 38434411 PMCID: PMC10907525 DOI: 10.1016/j.heliyon.2024.e26077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/01/2024] [Accepted: 02/07/2024] [Indexed: 03/05/2024] Open
Abstract
Water deficit is a critical obstacle that devastatingly impacts rice production, particularly in arid regions under current climatic fluctuations. Accordingly, it is decisive to reinforce the drought tolerance of rice by employing sustainable approaches to enhance global food security. The present study aimed at exploring the effect of exogenous application using different biostimulants on physiological, morphological, and yield attributes of diverse rice genotypes under water deficit and well-watered conditions in 2-year field trial. Three diverse rice genotypes (IRAT-112, Giza-178, and IR-64) were evaluated under well-watered (14400 m3/ha in total for the entire season) and water deficit (9170 m3/ha) conditions and were exogenously sprayed by nano-silicon, potassium sulfate, or proline. The results showed that drought stress substantially decreased all studied photosynthetic pigments, growth traits, and yield attributes compared to well-watered conditions. In contrast, antioxidant enzyme activities and osmoprotectants were considerably increased compared with those under well-watered conditions. However, the foliar application of nano-silicon, potassium sulfate, and proline substantially mitigated the deleterious effects of drought stress and markedly enhanced photosynthetic pigments, antioxidant enzyme activities, growth parameters, and yield contributing traits compared to untreated stressed control. Among the assessed treatments, foliar spray with nano-silicon or proline was more effective in promoting drought tolerance. The exogenous application of proline improved chlorophyll a, chlorophyll b, and carotenoids by 21.4, 19.6 and 21.0% followed by nano-silicon treatment, which enhanced chlorophyll a, chlorophyll b, and carotenoids by 21.1, 17.6 and 9.5% compared to untreated control. Besides, the application of proline demonstrated a superior improvement in the content of proline by 52.5% compared with the untreated control. Moreover, nano-silicon exhibited the maximum enhancement of catalase and peroxidase activity compared to the other treatments. The positive impacts of applied exogenously nano-silicon or proline significantly increased panicle length, number of panicles/plant, number of grains/panicle, fertility percentage, 1000-grain weight, panicle weight, and grain yield, compared to untreated plants under water deficit conditions. In addition, the physiological and agronomic performance of evaluated rice genotypes significantly contrasted under drought conditions. The genotype Giza-178 displayed the best performance under water deficit conditions compared with the other genotypes. Consequently, the integration of applied exogenously nano-silicon or proline with tolerant rice genotype as Giza-178 is an efficient approach to ameliorating drought tolerance and achieving agricultural sustainability under water-scarce conditions in arid environments.
Collapse
Affiliation(s)
- Mohamed S. Abd-El-Aty
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Mohamed M. Kamara
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Walid H. Elgamal
- Rice Research Department, Field Crops Research Institute, Agricultural Research Center, Giza 12619, Egypt
| | - Mohamed I. Mesbah
- Department of Agronomy, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - ElSayed A. Abomarzoka
- Crop Physiology Department, Field Crops Research Institute, Agriculture Research Center, Egypt
| | - Khairiah M. Alwutayd
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Elsayed Mansour
- Department of Crop Science, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
| | - Imen Ben Abdelmalek
- Department of Biology, College of Science, Qassim University, Buraydah 52571, Saudi Arabia
| | - Said I. Behiry
- Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt
| | - Ameina S. Almoshadak
- Biology Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Khaled Abdelaal
- Excellence Center, Plant Pathology and Biotechnology Laboratory, Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, 33516, Egypt
| |
Collapse
|
4
|
Sansan OC, Ezin V, Ayenan MAT, Chabi IB, Adoukonou-Sagbadja H, Saïdou A, Ahanchede A. Onion ( Allium cepa L.) and Drought: Current Situation and Perspectives. SCIENTIFICA 2024; 2024:6853932. [PMID: 38455126 PMCID: PMC10919983 DOI: 10.1155/2024/6853932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/09/2024]
Abstract
Onions (Allium cepa L.) are the second most commonly produced and consumed vegetable worldwide due to their economic, nutritional, and medicinal benefits. However, drought hinders vegetative growth, lowers yields and bulb quality, reduces photosynthetic activity, and alters the onion plant's metabolism. This review provides a summary of global research on the impact of drought on onions. It specifically seeks to shed light on aspects that remain unclear and generate research avenues. Relevant scientific articles were sourced from the AGORA database, Web of Science (WoS), and search engines such as Google Scholar, Scopus, MEDLINE/PubMed, and SCImago to achieve this objective. A total of 117 scientific articles and documents related to onion and drought were critically examined. The review revealed agromorphological, physiological, biochemical, and genomic studies depicting factors that contribute to drought tolerance in onion genotypes. However, there was little research on the physiological, biochemical, and genetic characteristics of drought tolerance in onions, which need to be deepened to establish its adaptation mechanisms. Understanding the mechanisms of onion response to water stress will contribute to fast-tracking the development of drought-tolerant genotypes and optimize onion production. Future research should be more focused on investigating onion drought tolerance mechanisms and structural and functional genomics and identifying genes responsible for onion drought tolerance.
Collapse
Affiliation(s)
- Oladé Charles Sansan
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Vincent Ezin
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Mathieu Anatole Tele Ayenan
- World Vegetable Center, West and Central Africa Coastal and Humid Regions, IITA-Benin Campus, 08 BP 0932 Tri Postal, Cotonou, Benin
| | - Ifagbémi Bienvenue Chabi
- Laboratory of Human Nutrition and Valorization of Food Bio-ingredients, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 03 BP 2819, Benin
| | - Hubert Adoukonou-Sagbadja
- Laboratory of Genetic and Biotechnology, Faculty of Sciences and Technology, University of Abomey-Calavi, Cotonou BP 526, Benin
| | - Aliou Saïdou
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| | - Adam Ahanchede
- Department of Crop Production, Faculty of Agricultural Sciences, University of Abomey-Calavi, Cotonou 01 BP 526, Benin
| |
Collapse
|
5
|
Ochar K, Kim SH. Conservation and Global Distribution of Onion ( Allium cepa L.) Germplasm for Agricultural Sustainability. PLANTS (BASEL, SWITZERLAND) 2023; 12:3294. [PMID: 37765458 PMCID: PMC10535454 DOI: 10.3390/plants12183294] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023]
Abstract
Onion (Allium cepa L.) is recognized globally as a crucial vegetable crop, prized not only for its culinary applications but also for its numerous health-promoting properties. With climate change relentlessly exerting mounting challenges to agriculture, the preservation and deployment of onion germplasm has become critical to ensuring sustainable agriculture and safeguarding food security. Global onion germplasm collections function as repositories of genetic diversity, holding within them an extensive array of valuable traits or genes. These can be harnessed to develop varieties resilient to climate adversities. Therefore, detailed information concerning onion germplasm collections from various geographical regions can bolster their utility. Furthermore, an amplified understanding of the importance of fostering international and inter-institutional collaborations becomes essential. Sharing and making use of onion genetic resources can provide viable solutions to the looming agricultural challenges of the future. In this review, we have discussed the preservation and worldwide distribution of onion germplasm, along with its implications for agricultural sustainability. We have also underscored the importance of international and interinstitutional collaboration in onion germplasm collecting and conservation for agricultural sustainability.
Collapse
Affiliation(s)
- Kingsley Ochar
- Council for Scientific and Industrial Research, Plant Genetic Resources Research Institute, Bunso P.O. Box 7, Ghana;
| | - Seong-Hoon Kim
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 5487, Republic of Korea
| |
Collapse
|
6
|
Kovačević TK, Išić N, Major N, Krpan M, Ban D, Franić M, Goreta Ban S. The Interplay of Physiological and Biochemical Response to Short-Term Drought Exposure in Garlic ( Allium sativum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:3215. [PMID: 37765378 PMCID: PMC10536737 DOI: 10.3390/plants12183215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/01/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023]
Abstract
The impacts of global climate change and a rapid increase in population have emerged as major concerns threatening global food security. Environmental abiotic stress, such as drought, severely impairs plants' morphology, physiology, growth, and yield more than many other environmental factors. Plants use a complex set of physiological, biochemical, and molecular mechanisms to combat the negative effects caused by drought-induced stress. The aim of this study was to investigate morphological, spectral, physiological, and biochemical changes occurring in 30 garlic accessions exposed to short-term drought stress in a greenhouse setting and to identify potential early drought-induced stress markers. The results showed that, on average, garlic plants exposed to drought conditions exhibited a decrease in assimilation, transpiration, and stomatal conductance of 39%, 52%, and 50%, respectively, and an average increase in dry matter and proline content of 10.13% and 14.29%, respectively. Nevertheless, a significant interaction between the treatment and accessions was observed in the investigated photosynthetic and biochemical parameters. The plants' early response to drought ranged from mild to strong depending on garlic accession. Multivariate analysis showed that accessions with a mild early drought response were characterized by higher values of assimilation, transpiration, and stomatal conductance compared to plants with moderate or strong early drought response. Additionally, accessions with strong early drought response were characterized by higher proline content, lipid peroxidation, and antioxidant capacity as measured by FRAP compared to accessions with mild-to-moderate early drought response.
Collapse
Affiliation(s)
- Tvrtko Karlo Kovačević
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
| | - Nina Išić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
| | - Nikola Major
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Marina Krpan
- Department of Food Quality Control, Faculty of Food Technology and Biotechnology, University of Zagreb, Pierottijeva 6, 10000 Zagreb, Croatia;
| | - Dean Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Mario Franić
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| | - Smiljana Goreta Ban
- Department of Agriculture and Nutrition, Institute of Agriculture and Tourism, K. Hugues 8, 52440 Poreč, Croatia; (T.K.K.); (N.I.); (D.B.); (M.F.)
- Centre of Excellence for Biodiversity and Molecular Plant Breeding, Svetošimunska 1, 10000 Zagreb, Croatia
| |
Collapse
|
7
|
Bhowmick BK, Sarkar S, Roychowdhury D, Patil SD, Lekhak MM, Ohri D, Rama Rao S, Yadav SR, Verma RC, Dhar MK, Raina SN, Jha S. Allium cytogenetics: a critical review on the Indian taxa. COMPARATIVE CYTOGENETICS 2023; 17:129-156. [PMID: 37304149 PMCID: PMC10252142 DOI: 10.3897/compcytogen.17.98903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/28/2023] [Indexed: 06/13/2023]
Abstract
The genus Allium Linnaeus, 1753 (tribe Allieae) contains about 800 species worldwide of which almost 38 species are reported in India, including the globally important crops (onion, garlic, leek, shallot) and many wild species. A satisfactory chromosomal catalogue of Allium species is missing which has been considered in the review for the species occurring in India. The most prominent base number is x=8, with few records of x=7, 10, 11. The genome size has sufficient clues for divergence, ranging from 7.8 pg/1C to 30.0 pg/1C in diploid and 15.16 pg/1C to 41.78 pg/1C in polyploid species. Although the karyotypes are seemingly dominated by metacentrics, substantial variation in nucleolus organizing regions (NORs) is noteworthy. The chromosomal rearrangement between A.cepa Linnaeus, 1753 and its allied species has paved way to appreciate genomic evolution within Allium. The presence of a unique telomere sequence and its conservation in Allium sets this genus apart from all other Amaryllids and supports monophyletic origin. Any cytogenetic investigation regarding NOR variability, telomere sequence and genome size in the Indian species becomes the most promising field to decipher chromosome evolution against the background of species diversity and evolution, especially in the Indian subcontinent.
Collapse
Affiliation(s)
- Biplab Kumar Bhowmick
- Department of Botany, Scottish Church College, 1&3, Urquhart Square, Kolkata- 700006, West Bengal, IndiaDepartment of Botany, Scottish Church CollegeKolkataIndia
| | - Sayantika Sarkar
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| | - Dipasree Roychowdhury
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| | - Sayali D. Patil
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - Manoj M. Lekhak
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - Deepak Ohri
- Amity Institute of Biotechnology, Research Cell, Amity University Uttar Pradesh, Lucknow Campus, Lucknow- 226028, Uttar Pradesh, IndiaAmity University Uttar PradeshLucknowIndia
| | - Satyawada Rama Rao
- Department of Biotechnology and Bioinformatics, North-Eastern Hill University, Shillong, Meghalaya- 793022, IndiaNorth-Eastern Hill UniversityShillongIndia
| | - S. R. Yadav
- Angiosperm Taxonomy Laboratory, Department of Botany, Shivaji University, Kolhapur, Maharashtra- 416004, IndiaShivaji UniversityKolhapurIndia
| | - R. C. Verma
- School of Studies in Botany, Vikram University, Ujjain, Madhya Pradesh 456010, IndiaVikram UniversityUjjainIndia
| | - Manoj K. Dhar
- Genome Research Laboratory, School of Biotechnology, University of Jammu, Jammu, Jammu and Kashmir- 180006, IndiaUniversity of JammuJammuIndia
| | - S. N. Raina
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh- 201313, IndiaAmity UniversityNoidaIndia
| | - Sumita Jha
- Department of Botany, University of Calcutta, 35 Ballygunge Circular Road, Kolkata- 700019, West Bengal, IndiaUniversity of CalcuttaKolkataIndia
| |
Collapse
|
8
|
Salunkhe VN, Gedam P, Pradhan A, Gaikwad B, Kale R, Gawande S. Concurrent waterlogging and anthracnose-twister disease in rainy-season onions ( Allium cepa): Impact and management. Front Microbiol 2022; 13:1063472. [PMID: 36569050 PMCID: PMC9773214 DOI: 10.3389/fmicb.2022.1063472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 11/16/2022] [Indexed: 12/13/2022] Open
Abstract
Waterlogging and anthracnose-twister disease are significant obstacles in rainy-season onion cultivation. As a shallow-rooted crop, onions are highly sensitive to waterlogging. Wherever rainy-season onion cultivation has been undertaken, the anthracnose-twister disease complex is also widespread across the world in addition to waterlogging. Waterlogging is the major predisposing factor for anthracnose and other fungal diseases. However, studies on the combined stress impact on onions have been ignored. In the present review, we have presented an overview of the anthracnose-twister disease, the waterlogging effect on host physiology, host-pathogen interaction under waterlogging stress, and appropriate management strategies to mitigate the combined stress effects. Crucial soil and crop management strategies can help cope with the negative impact of concurrent stresses. Raised bed planting with drip irrigation, the use of plant bio-regulators along with nutrient management, and need-based fungicide sprays would be the most reliable and feasible management options. The most comprehensive solution to withstand combined stress impacts would be a genetic improvement of commercial onion cultivars.
Collapse
Affiliation(s)
- Vanita Navnath Salunkhe
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India,School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Pranjali Gedam
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Aliza Pradhan
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Bhaskar Gaikwad
- School of Soil Stress Management, Indian Council of Agricultural Research (ICAR)-National Institute of Abiotic Stress Management, Baramati, Maharashtra, India
| | - Rajiv Kale
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India
| | - Suresh Gawande
- Division of Crop Protection, Indian Council of Agricultural Research (ICAR)-Directorate of Onion and Garlic Research, Pune, Maharashtra, India,*Correspondence: Suresh Gawande
| |
Collapse
|
9
|
Sanwal SK, Kesh H, Kumar A, Dubey BK, Khar A, Rouphael Y, Kumar P. Salt Tolerance Potential in Onion: Confirmation through Physiological and Biochemical Traits. PLANTS (BASEL, SWITZERLAND) 2022; 11:3325. [PMID: 36501363 PMCID: PMC9739851 DOI: 10.3390/plants11233325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Production of many crops, including onion, under salinity is lagging due to limited information on the physiological, biochemical and molecular mechanisms of salt stress tolerance in plants. Hence, the present study was conducted to identify salt-tolerant onion genotypes based on physiological and biochemical mechanisms associated with their differential responses. Thirty-six accessions were evaluated under control and salt stress conditions, and based on growth and bulb yield. Results revealed that plant height (6.07%), number of leaves per plant (3.07%), bulb diameter (11.38%), bulb yield per plant (31.24%), and total soluble solids (8.34%) were reduced significantly compared to control. Based on percent bulb yield reduction, seven varieties were classified as salt tolerant (with <20% yield reduction), seven as salt-sensitive (with >40% yield reduction) and the remaining as moderately tolerant (with 20 to 40% yield reduction). Finally, seven salt-tolerant and seven salt-sensitive accessions were selected for detailed study of their physiological and biochemical traits and their differential responses under salinity. High relative water content (RWC), membrane stability index (MSI), proline content (PRO), and better antioxidants such as super oxide dismutase (SOD), peroxidase (POX), catalase (CAT), and ascorbate peroxidase (APX) were observed in tolerant accessions, viz. POS35, NHRDF Red (L-28), GWO 1, POS36, NHRDF Red-4 (L-744), POS37, and POS38. Conversely, increased malondialdehyde (MDA) and hydrogen peroxide (H2O2) content, reduced activity of antioxidants, more membrane injury, and high Na+/K+ ratio were observed in sensitive accessions, viz. ALR, GJWO 3, Kalyanpur Red Round, NHRDF Red-3 (L-652), Agrifound White, and NHRDF (L-920). Stepwise regression analysis identified bulb diameter), plant height, APX, stomatal conductance (gS), POX, CAT, MDA, MSI, and bulb Na+/K+ ratio as predictor traits accounting for maximum variation in bulb yield under salinity. The identified seven salt-tolerant varieties can be used in future onion breeding programs for developing tolerant genotypes for salt-prone areas.
Collapse
Affiliation(s)
| | - Hari Kesh
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India
| | - Arvind Kumar
- ICAR—Central Soil Salinity Research Institute, Karnal 132001, India
| | - Bhanu Kumar Dubey
- National Horticultural Research and Development Foundation, Karnal 132001, India
| | - Anil Khar
- ICAR—Indian Agricultural Research Institute, New Delhi 110012, India
| | - Youssef Rouphael
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy
| | - Pradeep Kumar
- ICAR—Central Arid Zone Research Institute, Jodhpur 342003, India
| |
Collapse
|
10
|
Unfolding the mitochondrial genome structure of green semilooper (Chrysodeixis acuta Walker): An emerging pest of onion (Allium cepa L.). PLoS One 2022; 17:e0273635. [PMID: 36040876 PMCID: PMC9426943 DOI: 10.1371/journal.pone.0273635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/12/2022] [Indexed: 11/19/2022] Open
Abstract
Onion is the most important crop challenged by a diverse group of insect pests in the agricultural ecosystem. The green semilooper (Chrysodeixis acuta Walker), a widespread tomato and soybean pest, has lately been described as an emergent onion crop pest in India. C. acuta whole mitochondrial genome was sequenced in this work. The circular genome of C. acuta measured 15,743 base pairs (bp) in length. Thirteen protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and one control region were found in the 37 sequence elements. With an average 395 bp gene length, the maximum and minimum gene length observed was 1749 bp and 63 bp of nad5 and trnR, respectively. Nine of the thirteen PCGs have (ATN) as a stop codon, while the other four have a single (T) as a stop codon. Except for trnS1, all of the tRNAs were capable of producing a conventional clover leaf structure. Conserved ATAGA motif sequences and poly-T stretch were identified at the start of the control region. Six overlapping areas and 18 intergenic spacer regions were found, with sizes ranged from 1 to 20 bp and 1 to 111 bp correspondingly. Phylogenetically, C. acuta belongs to the Plusiinae subfamily of the Noctuidae superfamily, and is closely linked to Trichoplusia ni species from the same subfamily. In the present study, the emerging onion pest C. acuta has its complete mitochondrial genome sequenced for the first time.
Collapse
|
11
|
Gana LP, Etsassala NGER, Nchu F. Interactive Effects of Water Deficiency and Endophytic Beauveria bassiana on Plant Growth, Nutrient Uptake, Secondary Metabolite Contents, and Antioxidant Activity of Allium cepa L. J Fungi (Basel) 2022; 8:jof8080874. [PMID: 36012864 PMCID: PMC9410019 DOI: 10.3390/jof8080874] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 08/12/2022] [Accepted: 08/15/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of this research study was to assess the interactive effects of water deficiency and the inoculation of a growth medium with Beauveria bassiana on plant growth, nutrient uptake, secondary metabolite contents, and antioxidant capacity of Allium cepa. A. cepa seedlings were simultaneously exposed to one of three watering regime treatments (3-day, 5-day, and 7-day watering intervals) and B. bassiana or no-fungus treatment. While the longest watering interval induced reduced plant growth, plants inoculated with B. bassiana had better results than those in the no-fungus treatment. Significant interactive effects (DF = 2.0; p < 0.05) between fungus and the watering regime on P, K, and Fe contents were observed. Remarkably, at the 7-day watering interval, the polyphenol content (64.0 mg GAE/L) was significantly higher in the plants treated with B. bassiana than in the no-fungus-treated plants. The watering interval significantly affected (DF = 2, 6; F = 7.4; p < 0.05) total flavonol contents among the fungus-treated plants. The interaction of the watering interval and B. bassiana inoculation (DF = 2.0; F = 3.8; p < 0.05) significantly influenced the flavonol content in the onion bulbs and the antioxidant activities of onion bulbs in the FRAP assay (DF = 2.0; F = 4.1; p < 0.05).
Collapse
|
12
|
Shi G, Shen X, Ren H, Rao Y, Weng S, Tang X. Kernel principal component analysis and differential non-linear feature extraction of pesticide residues on fruit surface based on surface-enhanced Raman spectroscopy. FRONTIERS IN PLANT SCIENCE 2022; 13:956778. [PMID: 35928706 PMCID: PMC9344007 DOI: 10.3389/fpls.2022.956778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman spectroscopy (SERS) has attracted much attention because of its high sensitivity, high speed, and simple sample processing, and has great potential for application in the field of pesticide residue detection. However, SERS is susceptible to the influence of a complex detection environment in the detection of pesticide residues on the surface of fruits, facing problems such as interference from the spectral peaks of detected impurities, unclear dimension of effective correlation data, and poor linearity of sensing signals. In this work, the enhanced raw data of the pesticide thiram residues on the fruit surface using gold nanoparticle (Au-NPs) solution are formed into the raw data set of Raman signal in the IoT environment of Raman spectroscopy principal component detection. Considering the non-linear characteristics of sensing data, this work adopts kernel principal component analysis (KPCA) including radial basis function (RBF) to extract the main features for the spectra in the ranges of 653∼683 cm-1, 705∼728 cm-1, and 847∼872 cm-1, and discusses the effects of different kernel function widths (σ) to construct a qualitative analysis of pesticide residues based on SERS spectral data model, so that the SERS spectral data produce more useful dimensionality reduction with minimal loss, higher mean squared error for cross-validation in non-linear scenarios, and effectively weaken the interference features of detecting impurity spectral peaks, unclear dimensionality of effective correlation data, and poor linearity of sensing signals, reflecting better extraction effects than conventional principal component analysis (PCA) models.
Collapse
Affiliation(s)
- Guolong Shi
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- School of Electrical Engineering and Automation, Wuhan University, Wuhan, China
| | - Xinyi Shen
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Huan Ren
- School of Information and Computer, Anhui Agricultural University, Hefei, China
| | - Yuan Rao
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Hefei, China
| | - Shizhuang Weng
- National Engineering Research Center for Agro-Ecological Big Data Analysis and Application, Anhui University, Hefei, China
| | - Xianghu Tang
- School of Information and Computer, Anhui Agricultural University, Hefei, China
- Institute of Solid State Physics, Hefei Institutes of Physical Science (HFIPS), Chinese Academy of Sciences, Hefei, China
| |
Collapse
|
13
|
Sentinel-1 SAR Backscatter Response to Agricultural Drought in The Netherlands. REMOTE SENSING 2022. [DOI: 10.3390/rs14102435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drought is a major natural hazard that impacts agriculture, the environment, and socio-economic conditions. In 2018 and 2019, Europe experienced a severe drought due to below average precipitation and high temperatures. Drought stress affects the moisture content and structure of agricultural crops and can result in lower yields. Synthetic Aperture Radar (SAR) observations are sensitive to the dielectric and geometric characteristics of crops and underlying soils. This study uses data from ESA’s Sentinel-1 SAR satellite to investigate the influence of drought stress on major arable crops of the Netherlands, its regional variability and the impact of water management decisions on crop development. Sentinel-1 VV, VH and VH/VV backscatter data are used to quantify the variability in the spatio-temporal dynamics of agricultural crop parcels in response to drought. Results show that VV and VH backscatter values are 1 to 2 dB lower for crop parcels during the 2018 drought compared to values in 2017. In addition, the growth season indicated by the cross-ratio (CR, VH/VV) for maize and onion is shorter during the drought year. Differences due to irrigation restrictions are observed in backscatter response from maize parcels. Lower CR values in 2019 indicate the impact of drought on the start of the growing season. Results demonstrate that Sentinel-1 can detect changes in the seasonal cycle of arable crops in response to agricultural drought.
Collapse
|
14
|
Olorunwa OJ, Adhikari B, Shi A, Barickman TC. Screening of cowpea (Vigna unguiculata (L.) Walp.) genotypes for waterlogging tolerance using morpho-physiological traits at early growth stage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 315:111136. [PMID: 35067306 DOI: 10.1016/j.plantsci.2021.111136] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 06/14/2023]
Abstract
The majority of cowpea (Vigna unguiculata (L.) Walp.) produced in the U.S. is planted shortly after the summer rains and subsequently depends on rain or artificial irrigation. Therefore, excessive precipitation and poor soil drainage will cause cowpea plants to suffer temporary waterlogging, reducing the submerged tissue's oxygen level. Although cowpea is sensitive to waterlogging, excessive moisture can induce several morpho-physiological changes with adverse impacts on yield in its early stages of development. The current study subjected 30 cowpea genotypes to 10-days of waterlogging at the seedling stage under a controlled environment. The dynamic changes of 24 morpho-physiological parameters under waterlogging and optimal water conditions were analyzed to understand cowpea's response to waterlogging. Significant waterlogging treatment, cowpea genotypes, and their interactions (P < 0.001) were observed for most of the measured parameters. The results indicated that plant height (PH), leaf area (LA), fresh (FW) and dry weight (DW) of cowpea genotypes were significantly decreased under waterlogging compared to the control treatments. Similar results were obtained for net photosynthesis (Pn), stomatal conductance (gs), intercellular CO2 concentration (Ci), and transpiration rate (E). However, the water use efficiency (WUE) and adventitious roots (ARs) increased linearly under waterlogging conditions. Waterlogging also declined chlorophyll fluorescence parameters except non-photochemical quenching (qN), which increased with excess soil moisture. In addition, waterlogging tolerance coefficient (WTC) and multivariate analysis (MCA) methods were used to characterize cowpea genotypes for waterlogging tolerance. Accordingly, the cowpea genotype Dagupan Pangasinan, UCR 369, and Negro were classified as waterlogging tolerant, while EpicSelect.4 and ICARDA 140071, as the most waterlogging sensitive. The cowpea genotypes and morpho-physiological traits determined from this study may be useful for genetic engineering and breeding programs that integrate cowpea waterlogging tolerance.
Collapse
Affiliation(s)
- Omolayo J Olorunwa
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Bikash Adhikari
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA
| | - Ainong Shi
- Department of Horticulture, PTSC 316, University of Arkansas, Fayetteville, AR, 72701, USA
| | - T Casey Barickman
- Department of Plant and Soil Sciences, Mississippi State University, North Mississippi Research and Extension Center, Verona, MS, 38879, USA.
| |
Collapse
|
15
|
Gedam PA, Shirsat DV, Arunachalam T, Ghosh S, Gawande SJ, Mahajan V, Gupta AJ, Singh M. Screening of Onion ( Allium cepa L.) Genotypes for Waterlogging Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 12:727262. [PMID: 35069612 PMCID: PMC8766973 DOI: 10.3389/fpls.2021.727262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
Onion production is severely affected by waterlogging conditions, which are created due to heavy rainfall. Hence, the identification of waterlogging-tolerant onion genotypes is crucial for increasing onion production. In the present study, 100 distinct onion genotypes were screened for waterlogging tolerance under artificial conditions by using the phenotypic approach in the monsoon season of 2017. Based on plant survival and recovery and changes in bulb weight, we identified 19 tolerant, 27 intermediate tolerant, and 54 highly sensitive onion genotypes. The tolerant genotypes exhibited higher plant survival and better recovery and bulb size, whereas sensitive genotypes exhibited higher plant mortality, poor recovery, and small bulb size under waterlogging conditions. Furthermore, a subset of 12 contrasting genotypes was selected for field trials during monsoon seasons 2018 and 2019. Results revealed that considerable variation in the morphological, physiological, and yield characteristics were observed across the genotypes under stress conditions. Waterlogging-tolerant genotypes, namely, Acc. 1666, Acc. 1622, W-355, W-208, KH-M-2, and RGP-5, exhibited higher plant height, leaf number, leaf area, leaf length, chlorophyll content, membrane stability index (MSI), pyruvic acid, antioxidant content, and bulb yield than sensitive genotypes under stress conditions. Furthermore, the principal component analysis biplot revealed a strong association of leaf number, leaf area, chlorophyll content, MSI, and bulb yield with tolerant genotypes under stress conditions. The study indicates that the waterlogging-tolerant onion genotypes with promising stress-adaptive traits can be used in plant breeding programs for developing waterlogging-tolerant onion varieties.
Collapse
|
16
|
Mitigation of Drought Damages by Exogenous Chitosan and Yeast Extract with Modulating the Photosynthetic Pigments, Antioxidant Defense System and Improving the Productivity of Garlic Plants. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7110510] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Garlic is an important vegetable in terms of its economic value and also as a medicinal plant. In this study, chitosan (300 mM) and yeast extract (8 g/L) were used individually or in combination to improve the yields of garlic plants under drought conditions (i.e., 75% and 50% of the water they would normally receive from irrigation) for two seasons. Significant decreases in numbers of leaves per plant and plant height, plant dry weight, relative water content, and chlorophyll a and b concentrations were found in stressed garlic plants in both seasons. The greatest reductions in these characters were recorded in plants that received only 50% of the normal irrigation in both seasons. Levels of hydrogen peroxide, products of lipid peroxidation such as malondialdehyde, and superoxide, as well as percentages of electrolyte leakage, were elevated considerably and were signals of oxidative damage. The application of the yeast extract (8 g/L) or chitosan (300 mM) individually or in combination led to a remarkable increase in the most studied characters of the stressed garlic plants. The combination of yeast extract (8 g/L) plus chitosan (300 mM) led to increase plant height (44%), ascorbic acid levels (30.2%), and relative water content (36.8%), as well as the chlorophyll a (50.7%) and b concentrations (79%), regulated the proline content and levels of antioxidant enzymes in stressed garlic plants that received 75% of the normal irrigation, and this decreased the signs of oxidative stress (i.e., percentage of electrolyte leakage and levels of malondialdehyde, hydrogen peroxide, and superoxide).
Collapse
|
17
|
Chaudhry UK, Gökçe ZNÖ, Gökçe AF. Drought and salt stress effects on biochemical changes and gene expression of photosystem II and catalase genes in selected onion cultivars. Biologia (Bratisl) 2021. [DOI: 10.1007/s11756-021-00827-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|