1
|
Réthoré E, Pelletier S, Balliau T, Zivy M, Avelange-Macherel MH, Macherel D. Multi-scale analysis of heat stress acclimation in Arabidopsis seedlings highlights the primordial contribution of energy-transducing organelles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:300-331. [PMID: 38613336 DOI: 10.1111/tpj.16763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/08/2024] [Accepted: 03/14/2024] [Indexed: 04/14/2024]
Abstract
Much progress has been made in understanding the molecular mechanisms of plant adaptation to heat stress. However, the great diversity of models and stress conditions, and the fact that analyses are often limited to a small number of approaches, complicate the picture. We took advantage of a liquid culture system in which Arabidopsis seedlings are arrested in their development, thus avoiding interference with development and drought stress responses, to investigate through an integrative approach seedlings' global response to heat stress and acclimation. Seedlings perfectly tolerate a noxious heat shock (43°C) when subjected to a heat priming treatment at a lower temperature (38°C) the day before, displaying a thermotolerance comparable to that previously observed for Arabidopsis. A major effect of the pre-treatment was to partially protect energy metabolism under heat shock and favor its subsequent rapid recovery, which was correlated with the survival of seedlings. Rapid recovery of actin cytoskeleton and mitochondrial dynamics were another landmark of heat shock tolerance. The omics confirmed the role of the ubiquitous heat shock response actors but also revealed specific or overlapping responses to priming, heat shock, and their combination. Since only a few components or functions of chloroplast and mitochondria were highlighted in these analyses, the preservation and rapid recovery of their bioenergetic roles upon acute heat stress do not require extensive remodeling of the organelles. Protection of these organelles is rather integrated into the overall heat shock response, thus allowing them to provide the energy required to elaborate other cellular responses toward acclimation.
Collapse
Affiliation(s)
- Elise Réthoré
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Sandra Pelletier
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| | - Thierry Balliau
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | - Michel Zivy
- INRAE, PAPPSO, UMR/UMR Génétique Végétale, Gif sur Yvette, France
| | | | - David Macherel
- Univ Angers, Institut Agro Rennes-Angers, INRAE, IRHS-UMR 1345, F-49000, Angers, France
| |
Collapse
|
2
|
Fan J, Zhang H, Shi Y, Li Y, He Y, Wang Q, Liu S, Yao Y, Zhou X, Liao J, Huang Y, Wang Z. Systematic identification and characterization of microRNAs with target genes involved in high night temperature stress at the filling stage of rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14305. [PMID: 38659134 DOI: 10.1111/ppl.14305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
High night temperature stress is one of the main environmental factors affecting rice yield and quality. More and more evidence shows that microRNA (miRNA) plays an important role in various abiotic stresses. However, the molecular network of miRNA regulation on rice tolerance to high night temperatures remains unclear. Here, small RNA, transcriptome and degradome sequencing were integrated to identify differentially expressed miRNAs, genes, and key miRNA-target gene pairs in rice heat-sensitive and heat-tolerant lines at the filling stage suffering from high night temperature stress. It was discovered that there were notable differences in the relative expression of 102 miRNAs between the two rice lines under stress. Meanwhile, 5263 and 5405 mRNAs were differentially expressed in the heat-sensitive line and heat-tolerant line, and functional enrichment analysis revealed that these genes were involved in heat-related processes and pathways. The miRNAs-mRNAs target relationship was further verified by degradome sequencing. Eventually, 49 miRNAs-222 mRNAs target pairs with reverse expression patterns showed significant relative expression changes between the heat-tolerant and the heat-sensitive line, being suggested to be responsible for the heat tolerance difference of these two rice lines. Functional analysis of these 222 mRNA transcripts showed that high night temperature-responsive miRNAs targeted these mRNAs involved in many heat-related biological processes, such as transcription regulation, chloroplast regulation, mitochondrion regulation, protein folding, hormone regulation and redox process. This study identified possible miRNA-mRNA regulation relationships in response to high night temperature stress in rice and potentially contributed to heat resistance breeding of rice in the future.
Collapse
Affiliation(s)
- Jiangmin Fan
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Hongyu Zhang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yan Shi
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuewu Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yuxiang He
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Qiang Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Siyi Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Youmin Yao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Xiaoya Zhou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Jianglin Liao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Yingjin Huang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| | - Zhaohai Wang
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding (Jiangxi Agricultural University), Ministry of Education of the P.R. China, Nanchang, Jiangxi Province, China
- Key Laboratory of Agriculture Responding to Climate Change (Jiangxi Agricultural University), Nanchang, Jiangxi Province, China
| |
Collapse
|
3
|
Liu C, Dong K, Du H, Wang X, Sun J, Hu Q, Luo H, Sun X. AsHSP26.2, a creeping bentgrass chloroplast small heat shock protein positively regulates plant development. PLANT CELL REPORTS 2024; 43:32. [PMID: 38195772 DOI: 10.1007/s00299-023-03109-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 11/10/2023] [Indexed: 01/11/2024]
Abstract
KEY MESSAGE The creeping bentgrass small heat shock protein AsHSP26.2 positively regulates plant growth and is a novel candidate for use in crop genetic engineering for enhanced biomass production and grain yield. Small heat shock proteins (sHSPs), a family of proteins with high level of diversity, significantly influence plant stress tolerance and plant development. We have cloned a creeping bentgrass chloroplast-localized sHSP gene, AsHSP26.2 responsive to IAA, GA and 6-BA stimulation. Transgenic creeping bentgrass overexpressing AsHSP26.2 exhibited significantly enhanced plant growth with increased stolon number and length as well as enlarged leaf blade width and leaf sheath diameters, but inhibited leaf trichomes initiation and development in the abaxial epidermis. These phenotypes are completely opposite to those displayed in the transgenic plants overexpressing AsHSP26.8, another chloroplast sHSP26 isoform that contains additional seven amino acids (AEGQGDG) between the consensus regions III and IV (Sun et al., Plant Cell Environ 44:1769-1787, 2021). Furthermore, AsHSP26.2 overexpression altered phytohormone biosynthesis and signaling transduction, resulting in elevated auxin and gibberellins (GA) accumulation. The results obtained provide novel insights implicating the sHSPs in plant growth and development regulation, and strongly suggest AsHSP26.2 to be a novel candidate for use in crop genetic engineering for enhanced plant biomass production and grain yield.
Collapse
Affiliation(s)
- Chang Liu
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Kangting Dong
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Hui Du
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Xiaodong Wang
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- College of Plant Protection, Hebei Agricultural University, Baoding, 071000, China
| | - Jianmiao Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China
| | - Qian Hu
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA
| | - Hong Luo
- Department of Genetics and Biochemistry, Clemson University, 110 Biosystems Research Complex, Clemson, SC, 29634, USA.
| | - Xinbo Sun
- College of Agronomy, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
- State Key Laboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
- Key Laboratory of Crop Growth Regulation of Hebei Province, Hebei Agricultural University, Baoding, Hebei, 071001, People's Republic of China.
| |
Collapse
|
4
|
Zhang L, Kawaguchi R, Enomoto T, Nishida S, Burow M, Maruyama-Nakashita A. Glucosinolate Catabolism Maintains Glucosinolate Profiles and Transport in Sulfur-Starved Arabidopsis. PLANT & CELL PHYSIOLOGY 2023; 64:1534-1550. [PMID: 37464897 DOI: 10.1093/pcp/pcad075] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023]
Abstract
Glucosinolates (GSLs) are sulfur (S)-rich specialized metabolites present in Brassicales order plants. Our previous study found that GSL can function as a S source in Arabidopsis seedlings via its catabolism catalyzed by two β-glucosidases (BGLUs), BGLU28 and BGLU30. However, as GSL profiles in plants vary among growth stages and organs, the potential contribution of BGLU28/30-dependent GSL catabolism at the reproductive growth stage needs verification. Thus, in this study, we assessed growth, metabolic and transcriptional phenotypes of mature bglu28/30 double mutants grown under different S conditions. Our results showed that compared to wild-type plants grown under -S, mature bglu28/30 mutants displayed impaired growth and accumulated increased levels of GSL in their reproductive organs and rosette leaves of before-bolting plants. In contrast, the levels of primary S-containing metabolites, glutathione and cysteine decreased in their mature seeds. Furthermore, the transport of GSL from rosette leaves to the reproductive organs was stimulated in the bglu28/30 mutants under -S. Transcriptome analysis revealed that genes related to other biological processes, such as ethylene response, defense response and plant response to heat, responded differentially to -S in the bglu28/30 mutants. Altogether, these findings broadened our understanding of the roles of BGLU28/30-dependent GSL catabolism in plant adaptation to nutrient stress.
Collapse
Affiliation(s)
- Liu Zhang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Ryota Kawaguchi
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| | - Takuo Enomoto
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
- Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization, Shimada, 428-8501 Japan
| | - Sho Nishida
- Department of Biological Science Course, Faculty of Agriculture, Saga University, Saga, 840-8502 Japan
| | - Meike Burow
- Department of Plant and Environmental Sciences, DynaMo Center, University of Copenhagen, Frederiksberg DK-1871, Denmark
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg DK-1871, Denmark
| | - Akiko Maruyama-Nakashita
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Kyushu University, Fukuoka, 819-0395 Japan
| |
Collapse
|
5
|
Guo W, Luo H, Cao Y, Jiang Z, Liu H, Zou J, Sheng C, Xi Y. Multi-omics research on common allergens during the ripening of pollen and poplar flocs of Populus deltoides. FRONTIERS IN PLANT SCIENCE 2023; 14:1136613. [PMID: 37396639 PMCID: PMC10313134 DOI: 10.3389/fpls.2023.1136613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/23/2023] [Indexed: 07/04/2023]
Abstract
Background Populus deltoides is widely cultivated in China and produces a large number of pollen and poplar flocs from March to June per year. Previous studies have found that the pollen of P. deltoides contains allergens. However, studies on the ripening mechanism of pollen/poplar flocs and their common allergens are very limited. Methods Proteomics and metabolomics were used to study the changes of proteins and metabolites in pollen and poplar flocs of P. deltoides at different developmental stages. Allergenonline database was used to identify common allergens in pollen and poplar flocs at different developmental stages. Western blot (WB) was used to detect the biological activity of common allergens between mature pollen and poplar flocs. Results In total, 1400 differently expressed proteins (DEPs) and 459 different metabolites (DMs) were identified from pollen and poplar flocs at different developmental stages. KEGG enrichment analysis showed that DEPs in pollen and poplar flocs were significantly enriched in ribosome and oxidative phosphorylation signaling pathways. The DMs in pollen are mainly involved in aminoacyl-tRNA biosynthesis and arginine biosynthesis, while the DMs in poplar flocs are mainly involved in glyoxylate and dicarboxylate metabolism. Additionally, 72 common allergens were identified in pollen and poplar flocs at different developmental stages. WB showed that there were distinct binding bands between 70 and 17KD at the two groups of allergens. Conclusions A multitude of proteins and metabolites are closely related to the ripening of pollen and poplar flocs of Populus deltoides, and they contain common allergens between mature pollen and poplar flocs.
Collapse
Affiliation(s)
- Wei Guo
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Luo
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yi Cao
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Ziyun Jiang
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Hui Liu
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Jie Zou
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Changle Sheng
- School of Basic Medicine, Wannan Medical College, Wuhu, China
| | - Yilong Xi
- School of Ecology and Environment, Anhui Normal University, Wuhu, China
| |
Collapse
|
6
|
Gautam R, Meena RK, Rampuria S, Shukla P, Kirti PB. Ectopic expression of DnaJ type-I protein homolog of Vigna aconitifolia ( VaDJI) confers ABA insensitivity and multiple stress tolerance in transgenic tobacco plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1135552. [PMID: 37152162 PMCID: PMC10154610 DOI: 10.3389/fpls.2023.1135552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/31/2023] [Indexed: 05/09/2023]
Abstract
Reduced crop productivity results from altered plant physiological processes caused by dysfunctional proteins due to environmental stressors. In this study, a novel DnaJ Type-I encoding gene, VaDJI having a zinc finger motif in its C-terminal domain was found to be induced early upon treatment with heat stress (within 5 min) in a heat tolerant genotype of Vigna aconitifolia RMO-40. VaDJI is induced by multiple stresses. In tobacco, ectopic expression of VaDJI reduced ABA sensitivity during seed germination and the early stages of seedling growth of transgenic tobacco plants. Concomitantly, it also improved the ability of transgenic tobacco plants to withstand drought stress by modulating the photosynthetic efficiency, with the transgenic plants having higher Fv/Fm ratios and reduced growth inhibition. Additionally, transgenic plants showed a reduced build-up of H2O2 and lower MDA levels and higher chlorophyll content during drought stress, which attenuated cell damage and reduced oxidative damage. An analysis using the qRT-PCR study demonstrated that VaDJI overexpression is associated with the expression of some ROS-detoxification-related genes and stress-marker genes that are often induced during drought stress responses. These findings suggest a hypothesis whereby VaDJI positively influences drought stress tolerance and ABA signalling in transgenic tobacco, and suggests that it is a potential gene for genetic improvement of drought and heat stress tolerance in crop plants.
Collapse
Affiliation(s)
- Ranjana Gautam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
- Department of Life Sciences and Biotechnology, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Rajesh Kumar Meena
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Sakshi Rampuria
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pawan Shukla
- Seri-Biotech Research Laboratory, Central Silk Board, Bangalore, India
| | - P. B. Kirti
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
7
|
Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25:467-480. [PMID: 36690850 PMCID: PMC10014586 DOI: 10.1038/s41556-022-01074-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
Collapse
|
8
|
Sun Y, Li R, Zhang H, Ye J, Li C. Proteomic Analysis of the Inflorescence Stem Mechanical Strength Difference in Herbaceous Peonies ( Paeonia lactiflora Pall.). ACS OMEGA 2022; 7:34801-34809. [PMID: 36211058 PMCID: PMC9535702 DOI: 10.1021/acsomega.2c02749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 09/06/2022] [Indexed: 06/16/2023]
Abstract
The herbaceous peony (Paeonia lactiflora Pall.) is a traditional rare flower in China, and production of its cut flowers has developed gradually in many places of the world. However, the inflorescence stems of some P. lactiflora cultivars have such low mechanical strength that the cut flower production was severely restricted. To better understand the causes of this problem from a protein expression level, two P. lactiflora cultivars with different inflorescence stem mechanical strengths were analyzed by two-dimensional electrophoresis and MALDI-TOF/MS. More than 1700 clear protein spots were detected, 53 of which varied significantly. Moreover, 23 of the differentially expressed proteins were identified and confirmed and are involved in various biological processes such as metabolism, protein biosynthesis and transport, signal transduction, and defensive response. Especially, cinnamyl alcohol dehydrogenase (CAD) and xyloglucan endotransglucosylase/hydrolase (XTH) were strongly connected to the inflorescence stem mechanical strength in P. lactiflora.
Collapse
|
9
|
Wu J, Gao T, Hu J, Zhao L, Yu C, Ma F. Research advances in function and regulation mechanisms of plant small heat shock proteins (sHSPs) under environmental stresses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:154054. [PMID: 35202686 DOI: 10.1016/j.scitotenv.2022.154054] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/16/2022] [Accepted: 02/17/2022] [Indexed: 05/27/2023]
Abstract
Plants respond to various stresses by triggering the expression of genes that encode proteins involved in plant growth, fruit ripening, cellular protein homeostasis, and tolerance systems. sHSPs, a subfamily of heat shock proteins (HSPs), can be expressed in plants to inhibit abnormal aggregation of proteins and protect normal proteins by interacting with folding target proteins, protect cell integrity, and improve resistance under various adverse conditions. Thus, sHSPs have significant influences on seed germination and plant development. In this review, the classification, structure, and functions of sHSP family members in plants are systematically summarized, with emphasis on their roles in promoting fruit ripening and plant growth by reducing the accumulation of ROS, improving the survival rate of plants and the antioxidant activity, and protecting photosynthesis under biotic and abiotic stresses. Meanwhile, the production and regulatory mechanisms of sHSPs are described in detail. Heat shock factors, long non-coding RNA (lncRNAs), microRNA (miRNAs), and FK506 binding proteins are related to the production process of sHSPs. Molecular chaperone complex HSP70/100, plastidic proteins, and abscisic acid (ABA) are involved in the regulatory mechanisms of sHSPs. Besides, scientific efforts and practices for improving plant stress resistance have carried out the constitutive expression of sHSPs in transgenic plants in recent years. It is a powerful path for inducing the protective mechanisms of plants under various stresses. Therefore, exploring the role of sHSPs in the plant defense system paves a way for comprehensively unraveling plant tolerance in response to biotic and abiotic stress.
Collapse
Affiliation(s)
- Jieting Wu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China.
| | - Tian Gao
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Jianing Hu
- Dalian Neusoft University of Information, Dalian 116032, People's Republic of China
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China
| | - Chang Yu
- School of Environmental Science, Liaoning University, Shenyang 110036, People's Republic of China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, People's Republic of China.
| |
Collapse
|
10
|
Khatun M, Borphukan B, Alam I, Keya CA, Panditi V, Khan H, Huq S, Reddy MK, Salimullah M. Mitochondria-Targeted SmsHSP24.1 Overexpression Stimulates Early Seedling Vigor and Stress Tolerance by Multi-Pathway Transcriptome-Reprogramming. FRONTIERS IN PLANT SCIENCE 2021; 12:741898. [PMID: 34887885 PMCID: PMC8649800 DOI: 10.3389/fpls.2021.741898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Among the diverse array of heat shock proteins across the three domains of life, mitochondria-targeted small heat shock proteins (sHSPs) are evolved in the plant lineage. However, they remained mysterious and understudied. In this study, we reported a systematic study of a novel mitochondria-targeted nuclear sHSP from eggplant (Solanum melongena L.; SmsHSP24.1). Differential expression of SmsHSP24.1 indicated its positive role exerted during stress conditions. Escherichia coli-BL21 cell line overexpressing the SmsHSP24.1 showed excellent thermo-tolerance ability, tolerating up to 52°C. Spectrometry and electron microscopy revealed a multimeric structure of the protein which acted as a molecular chaperone at high temperatures. Overexpression of SmsHSP24.1 significantly enhanced resistance against heat, drought, and salt stresses and showed rapid germination in constitutively overexpressed eggplant lines. RNA-seq analysis reveals an apparent upregulation of a set of reactive oxygen species (ROS) scavenging enzymes of the glutathione (GHS) pathway and mitochondrial electron transport chain (ETC). Significant upregulation was also observed in auxin biosynthesis and cell-wall remodeling transcripts in overexpressed lines. qPCR, biochemical and physiological analysis further aligned with the finding of transcriptome analysis and suggested an essential role of SmsHSP24.1 under various stress responses and positive physiological influence on the growth of eggplants. Therefore, this gene has immense potential in engineering stress-resilient crop plants.
Collapse
Affiliation(s)
- Muslima Khatun
- Plant Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Bhabesh Borphukan
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Iftekhar Alam
- Plant Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Chaman Ara Keya
- Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Varakumar Panditi
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Haseena Khan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Saaimatul Huq
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| | - Malireddy K. Reddy
- Crop Improvement Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Md. Salimullah
- Molecular Biotechnology Division, National Institute of Biotechnology, Dhaka, Bangladesh
| |
Collapse
|
11
|
Maziak A, Heidorn-Czarna M, Weremczuk A, Janska H. FTSH4 and OMA1 mitochondrial proteases reduce moderate heat stress-induced protein aggregation. PLANT PHYSIOLOGY 2021; 187:769-786. [PMID: 34608962 PMCID: PMC8491029 DOI: 10.1093/plphys/kiab296] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 06/04/2021] [Indexed: 05/12/2023]
Abstract
The threat of global warming makes uncovering mechanisms of plant tolerance to long-term moderate heat stress particularly important. We previously reported that Arabidopsis (Arabidopsis thaliana) plants lacking mitochondrial proteases FTSH4 or OMA1 suffer phenotypic changes under long-term stress of 30°C, while their growth at 22°C is not affected. Here we found that these morphological and developmental changes are associated with increased accumulation of insoluble mitochondrial protein aggregates that consist mainly of small heat-shock proteins (sHSPs). Greater accumulation of sHSPs in ftsh4 than oma1 corresponds with more severe phenotypic abnormalities. We showed that the proteolytic activity of FTSH4, and to a lesser extent of OMA1, as well as the chaperone function of FTSH4, is crucial for protecting mitochondrial proteins against aggregation. We demonstrated that HSP23.6 and NADH dehydrogenase subunit 9 present in aggregates are proteolytic substrates of FTSH4, and this form of HSP23.6 is also a substrate of OMA1 protease. In addition, we found that the activity of FTSH4 plays an important role during recovery from elevated to optimal temperatures. Isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analyses, along with identification of aggregation-prone proteins, implicated mitochondrial pathways affected by protein aggregation (e.g. assembly of complex I) and revealed that the mitochondrial proteomes of ftsh4 and oma1 plants are similarly adapted to long-term moderate heat stress. Overall, our data indicate that both FTSH4 and OMA1 increase the tolerance of plants to long-term moderate heat stress by reducing detergent-tolerant mitochondrial protein aggregation.
Collapse
Affiliation(s)
- Agata Maziak
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Malgorzata Heidorn-Czarna
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Aleksandra Weremczuk
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
| | - Hanna Janska
- Department of Cellular Molecular Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, 50-383, Poland
- Author for communication:
| |
Collapse
|