1
|
Han P, Zhai Y, Liu W, Lin H, An Q, Zhang Q, Ding S, Zhang D, Pan Z, Nie X. Dissection of Hyperspectral Reflectance to Estimate Photosynthetic Characteristics in Upland Cotton ( Gossypium hirsutum L.) under Different Nitrogen Fertilizer Application Based on Machine Learning Algorithms. PLANTS (BASEL, SWITZERLAND) 2023; 12:455. [PMID: 36771540 PMCID: PMC9919998 DOI: 10.3390/plants12030455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/16/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Hyperspectral technology has enabled rapid and efficient nitrogen monitoring in crops. However, most approaches involve direct monitoring of nitrogen content or physiological and biochemical indicators directly related to nitrogen, which cannot reflect the overall plant nutritional status. Two important photosynthetic traits, the fraction of absorbed photosynthetically active radiation (FAPAR) and the net photosynthetic rate (Pn), were previously shown to respond positively to nitrogen changes. Here, Pn and FAPAR were used for correlation analysis with hyperspectral data to establish a relationship between nitrogen status and hyperspectral characteristics through photosynthetic traits. Using principal component and band autocorrelation analyses of the original spectral reflectance, two band positions (350-450 and 600-750 nm) sensitive to nitrogen changes were obtained. The performances of four machine learning algorithm models based on six forms of hyperspectral transformations showed that the light gradient boosting machine (LightGBM) model based on the hyperspectral first derivative could better invert the Pn of function-leaves in cotton, and the random forest (RF) model based on hyperspectral first derivative could better invert the FAPAR of the cotton canopy. These results provide advanced metrics for non-destructive tracking of cotton nitrogen status, which can be used to diagnose nitrogen nutrition and cotton growth status in large farms.
Collapse
Affiliation(s)
- Peng Han
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Yaping Zhai
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Wenhong Liu
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Hairong Lin
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qiushuang An
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Qi Zhang
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Shugen Ding
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Dawei Zhang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Zhenyuan Pan
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang Production and Construction Corps, Agricultural College, Shihezi University, Shihezi 832003, China
| |
Collapse
|
2
|
Shaikh MS, Jaferzadeh K, Thörnberg B. Extending Effective Dynamic Range of Hyperspectral Line Cameras for Short Wave Infrared Imaging. SENSORS 2022; 22:s22051817. [PMID: 35270968 PMCID: PMC8915087 DOI: 10.3390/s22051817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 12/04/2022]
Abstract
In this work, a multi-exposure method is proposed to increase the dynamic range (DR) of hyperspectral imaging using an InGaAs-based short-wave infrared (SWIR) hyperspectral line camera. Spectral signatures of materials were captured for scenarios in which the DR of a scene was greater than the DR of a line camera. To demonstrate the problem and test the proposed multi-exposure method, plastic detection in food waste and polymer sorting were chosen as the test application cases. The DR of the hyperspectral camera and the test samples were calculated experimentally. A multi-exposure method is proposed to create high-dynamic-range (HDR) images of food waste and plastic samples. Using the proposed method, the DR of SWIR imaging was increased from 43 dB to 73 dB, with the lowest allowable signal-to-noise ratio (SNR) set to 20 dB. Principal Component Analysis (PCA) was performed on both HDR and non-HDR image data from each test case to prepare the training and testing data sets. Finally, two support vector machine (SVM) classifiers were trained for each test case to compare the classification performance of the proposed multi-exposure HDR method against the single-exposure non-HDR method. The HDR method was found to outperform the non-HDR method in both test cases, with the classification accuracies of 98% and 90% respectively, for the food waste classification, and with 95% and 35% for the polymer classification.
Collapse
Affiliation(s)
- Muhammad Saad Shaikh
- Department of Electronics Design, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden;
- Correspondence:
| | - Keyvan Jaferzadeh
- Department of Computer Science and Software Engineering, Concordia University, Montreal, QC H3G 1M8, Canada;
| | - Benny Thörnberg
- Department of Electronics Design, Mid Sweden University, Holmgatan 10, 85170 Sundsvall, Sweden;
| |
Collapse
|