1
|
Li X, Chen Z, Li H, Yue L, Tan C, Liu H, Hu Y, Yang Y, Yao X, Kong L, Huang X, Yu B, Zhang C, Guan Y, Liu B, Kong F, Hou X. Dt1 inhibits SWEET-mediated sucrose transport to regulate photoperiod-dependent seed weight in soybean. MOLECULAR PLANT 2024; 17:496-508. [PMID: 38341616 DOI: 10.1016/j.molp.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 09/25/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
Soybean is a photoperiod-sensitive short-day crop whose reproductive period and yield are markedly affected by day-length changes. Seed weight is one of the key traits determining the soybean yield; however, the prominent genes that control the final seed weight of soybean and the mechanisms underlying the photoperiod's effect on this trait remain poorly understood. In this study, we identify SW19 as a major locus controlling soybean seed weight by QTL mapping and determine Dt1, an orthologous gene of Arabidopsis TFL1 that is known to govern the soybean growth habit, as the causal gene of the SW19 locus. We showed that Dt1 is highly expressed in developing seeds and regulates photoperiod-dependent seed weight in soybean. Further analyses revealed that the Dt1 protein physically interacts with the sucrose transporter GmSWEET10a to negatively regulate the import of sucrose from seed coat to the embryo, thus modulating seed weight under long days. However, Dt1 does not function in seed development under short days due to its very low expression. Importantly, we discovered a novel natural allelic variant of Dt1 (H4 haplotype) that decouples its pleiotropic effects on seed size and growth habit; i.e., this variant remains functional in seed development but fails to regulate the stem growth habit of soybean. Collectively, our findings provide new insights into how soybean seed development responds to photoperiod at different latitudes, offering an ideal genetic component for improving soybean's yield by manipulating its seed weight and growth habit.
Collapse
Affiliation(s)
- Xiaoming Li
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhonghui Chen
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lin Yue
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Cuirong Tan
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongjie Liu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yilong Hu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuhua Yang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Xiani Yao
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingping Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Bin Yu
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunyu Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Xingliang Hou
- Guangdong Provincial Key Laboratory of Applied Botany & State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Yao D, Zhou J, Zhang A, Wang J, Liu Y, Wang L, Pi W, Li Z, Yue W, Cai J, Liu H, Hao W, Qu X. Advances in CRISPR/Cas9-based research related to soybean [ Glycine max (Linn.) Merr] molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1247707. [PMID: 37711287 PMCID: PMC10499359 DOI: 10.3389/fpls.2023.1247707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 07/28/2023] [Indexed: 09/16/2023]
Abstract
Soybean [Glycine max (Linn.) Merr] is a source of plant-based proteins and an essential oilseed crop and industrial raw material. The increase in the demand for soybeans due to societal changes has coincided with the increase in the breeding of soybean varieties with enhanced traits. Earlier gene editing technologies involved zinc finger nucleases and transcription activator-like effector nucleases, but the third-generation gene editing technology uses clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9). The rapid development of CRISPR/Cas9 technology has made it one of the most effective, straightforward, affordable, and user-friendly technologies for targeted gene editing. This review summarizes the application of CRISPR/Cas9 technology in soybean molecular breeding. More specifically, it provides an overview of the genes that have been targeted, the type of editing that occurs, the mechanism of action, and the efficiency of gene editing. Furthermore, suggestions for enhancing and accelerating the molecular breeding of novel soybean varieties with ideal traits (e.g., high yield, high quality, and durable disease resistance) are included.
Collapse
Affiliation(s)
- Dan Yao
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| | - Junming Zhou
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Aijing Zhang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jiaxin Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Yixuan Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Lixue Wang
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenxuan Pi
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Zihao Li
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenjun Yue
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Jinliang Cai
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Huijing Liu
- College of Life Science, Jilin Agricultural University, Changchun, Jilin, China
| | - Wenyuan Hao
- Jilin Provincial Academy of Agricultural Sciences, Changchun, Jilin, China
| | - Xiangchun Qu
- Institute of Crop Resources, Jilin Provincial Academy of Agricultural Sciences, Gongzhuling, Jilin, China
| |
Collapse
|
3
|
Du H, Fang C, Li Y, Kong F, Liu B. Understandings and future challenges in soybean functional genomics and molecular breeding. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:468-495. [PMID: 36511121 DOI: 10.1111/jipb.13433] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Soybean (Glycine max) is a major source of plant protein and oil. Soybean breeding has benefited from advances in functional genomics. In particular, the release of soybean reference genomes has advanced our understanding of soybean adaptation to soil nutrient deficiencies, the molecular mechanism of symbiotic nitrogen (N) fixation, biotic and abiotic stress tolerance, and the roles of flowering time in regional adaptation, plant architecture, and seed yield and quality. Nevertheless, many challenges remain for soybean functional genomics and molecular breeding, mainly related to improving grain yield through high-density planting, maize-soybean intercropping, taking advantage of wild resources, utilization of heterosis, genomic prediction and selection breeding, and precise breeding through genome editing. This review summarizes the current progress in soybean functional genomics and directs future challenges for molecular breeding of soybean.
Collapse
Affiliation(s)
- Haiping Du
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chao Fang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Yaru Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
4
|
Xia Z, Zhai H, Zhang Y, Wang Y, Wang L, Xu K, Wu H, Zhu J, Jiao S, Wan Z, Zhu X, Gao Y, Liu Y, Fan R, Wu S, Chen X, Liu J, Yang J, Song Q, Tian Z. QNE1 is a key flowering regulator determining the length of the vegetative period in soybean cultivars. SCIENCE CHINA. LIFE SCIENCES 2022; 65:2472-2490. [PMID: 35802303 DOI: 10.1007/s11427-022-2117-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/22/2022] [Indexed: 06/15/2023]
Abstract
The soybean E1 gene is a major regulator that plays an important role in flowering time and maturity. However, it remains unclear how cultivars carrying the dominant E1 allele adapt to the higher latitudinal areas of northern China. We mapped the novel quantitative trait locus QNE1 (QTL near E1) for flowering time to the region proximal to E1 on chromosome 6 in two mapping populations. Positional cloning revealed Glyma.06G204300, encoding a TCP-type transcription factor, as a strong candidate gene for QNE1. Association analysis further confirmed that functional single nucleotide polymorphisms (SNPs) at nucleotides 686 and 1,063 in the coding region of Glyma.06G204300 were significantly associated with flowering time. The protein encoded by the candidate gene is localized primarily to the nucleus. Furthermore, soybean and Brassica napus plants overexpressing Glyma.06G204300 exhibited early flowering. We conclude that despite their similar effects on flowering time, QNE1 and E4 may control flowering time through different regulatory mechanisms, based on expression studies and weighted gene co-expression network analysis of flowering time-related genes. Deciphering the molecular basis of QNE1 control of flowering time enriches our knowledge of flowering gene networks in soybean and will facilitate breeding soybean cultivars with broader latitudinal adaptation.
Collapse
Affiliation(s)
- Zhengjun Xia
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Hong Zhai
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, 712100, China
| | - Yaying Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Lu Wang
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Kun Xu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Hongyan Wu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jinglong Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Shuang Jiao
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Zhao Wan
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xiaobin Zhu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yi Gao
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Yingxiang Liu
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Rong Fan
- College of Life Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shihao Wu
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Xin Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinyu Liu
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Harbin, 150081, China
| | - Jiayin Yang
- Huaiyin Institute of Agricultural Science of Xuhuai Region, Jiangsu Academy of Agricultural Sciences, Huai'an, 223001, China
| | - Qijian Song
- USDA ARS, Soybean Genome & Improvement Lab, Beltsville, 20705, USA
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
5
|
Škrabišová M, Dietz N, Zeng S, Chan YO, Wang J, Liu Y, Biová J, Joshi T, Bilyeu KD. A novel Synthetic phenotype association study approach reveals the landscape of association for genomic variants and phenotypes. J Adv Res 2022; 42:117-133. [PMID: 36513408 PMCID: PMC9788956 DOI: 10.1016/j.jare.2022.04.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 02/14/2022] [Accepted: 04/08/2022] [Indexed: 12/27/2022] Open
Abstract
INTRODUCTION Genome-Wide Association Studies (GWAS) identify tagging variants in the genome that are statistically associated with the phenotype because of their linkage disequilibrium (LD) relationship with the causative mutation (CM). When both low-density genotyped accession panels with phenotypes and resequenced data accession panels are available, tagging variants can assist with post-GWAS challenges in CM discovery. OBJECTIVES Our objective was to identify additional GWAS evaluation criteria to assess correspondence between genomic variants and phenotypes, as well as enable deeper analysis of the localized landscape of association. METHODS We used genomic variant positions as Synthetic phenotypes in GWAS that we named "Synthetic phenotype association study" (SPAS). The extreme case of SPAS is what we call an "Inverse GWAS" where we used CM positions of cloned soybean genes. We developed and validated the Accuracy concept as a measure of the correspondence between variant positions and phenotypes. RESULTS The SPAS approach demonstrated that the genotype status of an associated variant used as a Synthetic phenotype enabled us to explore the relationships between tagging variants and CMs, and further, that utilizing CMs as Synthetic phenotypes in Inverse GWAS illuminated the landscape of association. We implemented the Accuracy calculation for a curated accession panel to an online Accuracy calculation tool (AccuTool) as a resource for gene identification in soybean. We demonstrated our concepts on three examples of soybean cloned genes. As a result of our findings, we devised an enhanced "GWAS to Genes" analysis (Synthetic phenotype to CM strategy, SP2CM). Using SP2CM, we identified a CM for a novel gene. CONCLUSION The SP2CM strategy utilizing Synthetic phenotypes and the Accuracy calculation of correspondence provides crucial information to assist researchers in CM discovery. The impact of this work is a more effective evaluation of landscapes of GWAS associations.
Collapse
Affiliation(s)
- Mária Škrabišová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc 78371, Czech Republic
| | - Nicholas Dietz
- Division of Plant Sciences, University of Missouri, Columbia, MO 65201, USA
| | - Shuai Zeng
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Yen On Chan
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA
| | - Juexin Wang
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA
| | - Yang Liu
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA
| | - Jana Biová
- Department of Biochemistry, Faculty of Science, Palacky University Olomouc, Olomouc 78371, Czech Republic
| | - Trupti Joshi
- Department of Electrical Engineering and Computer Science, University of Missouri, Columbia, MO 65212, USA,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, USA,MU Data Science and Informatics Institute, University of Missouri, Columbia, MO 65212, USA,Department of Health Management and Informatics, School of Medicine, University of Missouri, Columbia, MO 65212, USA,Corresponding authors at: Department of Health Management and Informatics, School of Medicine, 1201 E Rollins St, 271B Life Science Center, Columbia, MO 65201, USA (T. Joshi). Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, 110 Waters Hall, University of Missouri, Columbia, MO 65211, USA (K.D. Bilyeu).
| | - Kristin D. Bilyeu
- Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, MO 65211, USA,Corresponding authors at: Department of Health Management and Informatics, School of Medicine, 1201 E Rollins St, 271B Life Science Center, Columbia, MO 65201, USA (T. Joshi). Plant Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service, 110 Waters Hall, University of Missouri, Columbia, MO 65211, USA (K.D. Bilyeu).
| |
Collapse
|
6
|
Su Q, Chen L, Cai Y, Chen Y, Yuan S, Li M, Zhang J, Sun S, Han T, Hou W. Functional Redundancy of FLOWERING LOCUS T 3b in Soybean Flowering Time Regulation. Int J Mol Sci 2022; 23:2497. [PMID: 35269637 PMCID: PMC8910378 DOI: 10.3390/ijms23052497] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 12/17/2022] Open
Abstract
Photoperiodic flowering is an important agronomic trait that determines adaptability and yield in soybean and is strongly influenced by FLOWERING LOCUS T (FT) genes. Due to the presence of multiple FT homologs in the genome, their functions in soybean are not fully understood. Here, we show that GmFT3b exhibits functional redundancy in regulating soybean photoperiodic flowering. Bioinformatic analysis revealed that GmFT3b is a typical floral inducer FT homolog and that the protein is localized to the nucleus. Moreover, GmFT3b expression was induced by photoperiod and circadian rhythm and was more responsive to long-day (LD) conditions. We generated a homozygous ft3b knockout and three GmFT3b-overexpressing soybean lines for evaluation under different photoperiods. There were no significant differences in flowering time between the wild-type, the GmFT3b overexpressors, and the ft3b knockouts under natural long-day, short-day, or LD conditions. Although the downstream flowering-related genes GmFUL1 (a, b), GmAP1d, and GmLFY1 were slightly down-regulated in ft3b plants, the floral inducers GmFT5a and GmFT5b were highly expressed, indicating potential compensation for the loss of GmFT3b. We suggest that GmFT3b acts redundantly in flowering time regulation and may be compensated by other FT homologs in soybean.
Collapse
Affiliation(s)
- Qiang Su
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Li Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Yupeng Cai
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Yingying Chen
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Shan Yuan
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Min Li
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Jialing Zhang
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Shi Sun
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Tianfu Han
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| | - Wensheng Hou
- National Center for Transgenic Research in Plants, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (Q.S.); (L.C.); (Y.C.); (Y.C.); (J.Z.)
- Ministry of Agriculture Key Laboratory of Soybean Biology (Beijing), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China; (S.Y.); (M.L.); (S.S.); (T.H.)
| |
Collapse
|
7
|
Luo X, Yin M, He Y. Molecular Genetic Understanding of Photoperiodic Regulation of Flowering Time in Arabidopsis and Soybean. Int J Mol Sci 2021; 23:466. [PMID: 35008892 PMCID: PMC8745532 DOI: 10.3390/ijms23010466] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/25/2021] [Accepted: 12/29/2021] [Indexed: 12/15/2022] Open
Abstract
The developmental switch from a vegetative phase to reproduction (flowering) is essential for reproduction success in flowering plants, and the timing of the floral transition is regulated by various environmental factors, among which seasonal day-length changes play a critical role to induce flowering at a season favorable for seed production. The photoperiod pathways are well known to regulate flowering time in diverse plants. Here, we summarize recent progresses on molecular mechanisms underlying the photoperiod control of flowering in the long-day plant Arabidopsis as well as the short-day plant soybean; furthermore, the conservation and diversification of photoperiodic regulation of flowering in these two species are discussed.
Collapse
Affiliation(s)
- Xiao Luo
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
| | - Mengnan Yin
- Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Shanghai 201602, China;
| | - Yuehui He
- Peking University Institute of Advanced Agricultural Sciences, Weifang 261325, China
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
8
|
Dietz N, Combs-Giroir R, Cooper G, Stacey M, Miranda C, Bilyeu K. Geographic distribution of the E1 family of genes and their effects on reproductive timing in soybean. BMC PLANT BIOLOGY 2021; 21:441. [PMID: 34587901 PMCID: PMC8480027 DOI: 10.1186/s12870-021-03197-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Soybean is an economically important crop which flowers predominantly in response to photoperiod. Several major loci controlling the quantitative trait for reproductive timing have been identified, of which allelic combinations at three of these loci, E1, E2, and E3, are the dominant factors driving time to flower and reproductive period. However, functional genomics studies have identified additional loci which affect reproductive timing, many of which are less understood. A better characterization of these genes will enable fine-tuning of adaptation to various production environments. Two such genes, E1La and E1Lb, have been implicated in flowering by previous studies, but their effects have yet to be assessed under natural photoperiod regimes. RESULTS Natural and induced variants of E1La and E1Lb were identified and introgressed into lines harboring either E1 or its early flowering variant, e1-as. Lines were evaluated for days to flower and maturity in a Maturity Group (MG) III production environment. These results revealed that variation in E1La and E1Lb promoted earlier flowering and maturity, with stronger effects in e1-as background than in an E1 background. The geographic distribution of E1La alleles among wild and cultivated soybean revealed that natural variation in E1La likely contributed to northern expansion of wild soybean, while breeding programs in North America exploited e1-as to develop cultivars adapted to northern latitudes. CONCLUSION This research identified novel alleles of the E1 paralogues, E1La and E1Lb, which promote flowering and maturity under natural photoperiods. These loci represent sources of genetic variation which have been under-utilized in North American breeding programs to control reproductive timing, and which can be valuable additions to a breeder's molecular toolbox.
Collapse
Affiliation(s)
- Nicholas Dietz
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Rachel Combs-Giroir
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Grace Cooper
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Minviluz Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO, 65211, USA
| | - Carrie Miranda
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Kristin Bilyeu
- USDA/ARS Plant Genetics Research Unit, Columbia, MO, 65211, USA.
| |
Collapse
|