1
|
Dutta TK, Ray S, Phani V. The status of the CRISPR/Cas9 research in plant-nematode interactions. PLANTA 2023; 258:103. [PMID: 37874380 DOI: 10.1007/s00425-023-04259-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/01/2023] [Indexed: 10/25/2023]
Abstract
MAIN CONCLUSION As an important biotic stressor, plant-parasitic nematodes afflict global crop productivity. Deployment of CRISPR/Cas9 system that selectively knock out host susceptibility genes conferred improved nematode tolerance in crop plants. As an important biotic stressor, plant-parasitic nematodes cause a considerable yield decline in crop plants that eventually contributes to a negative impact on global food security. Being obligate plant parasites, the root-knot and cyst nematodes maintain an intricate and sophisticated relationship with their host plants by hijacking the host's physiological and metabolic pathways for their own benefit. Significant progress has been made toward developing RNAi-based transgenic crops that confer nematode resistance. However, the strategy of host-induced gene silencing that targets nematode effectors is likely to fail because the induced silencing of effectors (which interact with plant R genes) may lead to the development of nematode phenotypes that break resistance. Lately, the CRISPR/Cas9-based genome editing system has been deployed to achieve host resistance against bacteria, fungi, and viruses. In these studies, host susceptibility (S) genes were knocked out to achieve resistance via loss of susceptibility. As the S genes are recessively inherited in plants, induced mutations of the S genes are likely to be long-lasting and confer broad-spectrum resistance. A number of S genes contributing to plant susceptibility to nematodes have been identified in Arabidopsis thaliana, rice, tomato, cucumber, and soybean. A few of these S genes were targeted for CRISPR/Cas9-based knockout experiments to improve nematode tolerance in crop plants. Nevertheless, the CRISPR/Cas9 system was mostly utilized to interrogate the molecular basis of plant-nematode interactions rather than direct research toward achieving tolerance in crop plants. The current standalone article summarizes the progress made so far on CRISPR/Cas9 research in plant-nematode interactions.
Collapse
Affiliation(s)
- Tushar K Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Soham Ray
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, 110012, India
| | - Victor Phani
- Department of Agricultural Entomology, College of Agriculture, Uttar Banga Krishi Viswavidyalaya, Dakshin Dinajpur, West Bengal, 733133, India
| |
Collapse
|
2
|
Mandal SN, Sanchez J, Bhowmick R, Bello OR, Van-Beek CR, de Los Reyes BG. Novel genes and alleles of the BTB/POZ protein family in Oryza rufipogon. Sci Rep 2023; 13:15466. [PMID: 37726366 PMCID: PMC10509276 DOI: 10.1038/s41598-023-41269-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 08/24/2023] [Indexed: 09/21/2023] Open
Abstract
The BTB/POZ family of proteins is widespread in plants and animals, playing important roles in development, growth, metabolism, and environmental responses. Although members of the expanded BTB/POZ gene family (OsBTB) have been identified in cultivated rice (Oryza sativa), their conservation, novelty, and potential applications for allele mining in O. rufipogon, the direct progenitor of O. sativa ssp. japonica and potential wide-introgression donor, are yet to be explored. This study describes an analysis of 110 BTB/POZ encoding gene loci (OrBTB) across the genome of O. rufipogon as outcomes of tandem duplication events. Phylogenetic grouping of duplicated OrBTB genes was supported by the analysis of gene sequences and protein domain architecture, shedding some light on their evolution and functional divergence. The O. rufipogon genome encodes nine novel BTB/POZ genes with orthologs in its distant cousins in the family Poaceae (Sorghum bicolor, Brachypodium distachyon), but such orthologs appeared to have been lost in its domesticated descendant, O. sativa ssp. japonica. Comparative sequence analysis and structure comparisons of novel OrBTB genes revealed that diverged upstream regulatory sequences and regulon restructuring are the key features of the evolution of this large gene family. Novel genes from the wild progenitor serve as a reservoir of potential new alleles that can bring novel functions to cultivars when introgressed by wide hybridization. This study establishes a foundation for hypothesis-driven functional genomic studies and their applications for widening the genetic base of rice cultivars through the introgression of novel genes or alleles from the exotic gene pool.
Collapse
Affiliation(s)
- Swarupa Nanda Mandal
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Jacobo Sanchez
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Rakesh Bhowmick
- ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, 263601, India
| | - Oluwatobi R Bello
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | - Coenraad R Van-Beek
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, 79409, USA
| | | |
Collapse
|
3
|
Understanding Molecular Plant–Nematode Interactions to Develop Alternative Approaches for Nematode Control. PLANTS 2022; 11:plants11162141. [PMID: 36015444 PMCID: PMC9415668 DOI: 10.3390/plants11162141] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/09/2022] [Indexed: 12/26/2022]
Abstract
Developing control measures of plant-parasitic nematodes (PPNs) rank high as they cause big crop losses globally. The growing awareness of numerous unsafe chemical nematicides and the defects found in their alternatives are calling for rational molecular control of the nematodes. This control focuses on using genetically based plant resistance and exploiting molecular mechanisms underlying plant–nematode interactions. Rapid and significant advances in molecular techniques such as high-quality genome sequencing, interfering RNA (RNAi) and gene editing can offer a better grasp of these interactions. Efficient tools and resources emanating from such interactions are highlighted herein while issues in using them are summarized. Their revision clearly indicates the dire need to further upgrade knowledge about the mechanisms involved in host-specific susceptibility/resistance mediated by PPN effectors, resistance genes, or quantitative trait loci to boost their effective and sustainable use in economically important plant species. Therefore, it is suggested herein to employ the impacts of these techniques on a case-by-case basis. This will allow us to track and optimize PPN control according to the actual variables. It would enable us to precisely fix the factors governing the gene functions and expressions and combine them with other PPN control tactics into integrated management.
Collapse
|
4
|
Fitoussi N, de Almeida Engler J, Sichov N, Bucki P, Sela N, Harel A, Belausuv E, Kumar A, Brown Miyara S. The Minichromosome Maintenance Complex Component 2 (MjMCM2) of Meloidogyne javanica is a potential effector regulating the cell cycle in nematode-induced galls. Sci Rep 2022; 12:9196. [PMID: 35654810 PMCID: PMC9163083 DOI: 10.1038/s41598-022-13020-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022] Open
Abstract
Root-knot nematodes Meloidogyne spp. induce enlarged multinucleate feeding cells—galls—in host plant roots. Although core cell-cycle components in galls follow a conserved track, they can also be usurped and manipulated by nematodes. We identified a candidate effector in Meloidogyne javanica that is directly involved in cell-cycle manipulation—Minichromosome Maintenance Complex Component 2 (MCM2), part of MCM complex licensing factor involved in DNA replication. MjMCM2, which is induced by plant oxilipin 9-HOT, was expressed in nematode esophageal glands, upregulated during parasitic stages, and was localized to plant cell nucleus and plasma membrane. Infected tomato hairy roots overexpressing MjMCM2 showed significantly more galls and egg-mass-producing females than wild-type roots, and feeding cells showed more nuclei. Phylogenetic analysis suggested seven homologues of MjMCM2 with unknown association to parasitism. Sequence mining revealed two RxLR-like motifs followed by SEED domains in all Meloidogyne spp. MCM2 protein sequences. The unique second RxLR-like motif was absent in other Tylenchida species. Molecular homology modeling of MjMCM2 suggested that second RxLR2-like domain is positioned on a surface loop structure, supporting its function in polar interactions. Our findings reveal a first candidate cell-cycle gene effector in M. javanica—MjMCM2—that is likely secreted into plant host to mimic function of endogenous MCM2.
Collapse
Affiliation(s)
- Nathalia Fitoussi
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.,Department of Plant Pathology and Microbiology, The Faculty of Agriculture Food and Environment, The Hebrew University of Jerusalem, 76100, Rehovot, Israel
| | | | - Natalia Sichov
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Patricia Bucki
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Noa Sela
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Arye Harel
- Bioinformatics Unit, Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausuv
- Department of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, Bet Dagan, Israel
| | - Anil Kumar
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Sigal Brown Miyara
- Department of Entomology, Nematology and Chemistry Units, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|