1
|
Nabi G, Anjum T, Aftab Z, Rizwana H, Akram W. TiO 2 nanoparticles: Green synthesis and their role in lessening the damage of Colletotrichum graminicola in sorghum. Food Sci Nutr 2024; 12:7379-7391. [PMID: 39479671 PMCID: PMC11521671 DOI: 10.1002/fsn3.4297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 11/02/2024] Open
Abstract
Fungal pathogens pose a persistent threat to crop plants, risking global food security. Anthracnose of sorghum caused by Colletotrichum graminicola causes a considerable loss in sorghum production. This study aimed to manage the anthracnose disease in sorghum using green-synthesized TiO2 nanoparticles using pomegranate peel and to assess their impacts on the agroeconomic attributes of sorghum. Synthesized TiO2 nanoparticles showed strong dose-dependent antifungal activity against C. graminicola and significantly reduced mycelial radial growth, comparable to commercial fungicides. Foliar application of TiO2 at concentrations of 150 and 200 ppm reduced the disease index >60% in pot trials. Additionally, the effect of TiO2 NPs on the growth and yield of sorghum plants and the possible mechanism(s) behind the suppression of anthracnose disease were deciphered. TiO2 NPs also improved shoot and root length, biomass accumulation, penile size, number of grains, and grain weight in sorghum plants infected with C. graminicola. Application of TiO2 NPs significantly increased the content of defense-related biochemicals, including total phenolic contents, activities of defense-related enzymes (PO, PPO, and PAL), photosynthetic pigments (total chlorophyll contents and carotenoids), and total protein contents. Collectively, our study verified the potential of green-synthesized titanium dioxide nanoparticles to suppress anthracnose disease by activating a defense system and stimulating growth and yield promotion under pathogen stress.
Collapse
Affiliation(s)
- Ghulam Nabi
- Department of Plant Pathology, Faculty of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | - Tehmina Anjum
- Department of Plant Pathology, Faculty of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | - Zill‐e‐Huma Aftab
- Department of Plant Pathology, Faculty of Agricultural SciencesUniversity of the PunjabLahorePakistan
| | - Humaira Rizwana
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Waheed Akram
- Department of Plant Pathology, Faculty of Agricultural SciencesUniversity of the PunjabLahorePakistan
- Vegetable Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
2
|
Chen S, Zhao Z, Liu X, Li K, Arif M, Zhang B, Dong L, Wang R, Ren M, Xie X. Response and disease resistance evaluation of sorghum seedlings under anthracnose stress. Sci Rep 2024; 14:21978. [PMID: 39304668 DOI: 10.1038/s41598-024-70088-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 08/13/2024] [Indexed: 09/22/2024] Open
Abstract
Sorghum is the world's fifth-largest cereal crop, and anthracnose (Colletotrichum sublineola) is the main disease affecting sorghum. However, systematic research on the cellular structure, physiological and biochemical, and genes related to anthracnose resistance and disease resistance evaluation in sorghum is lacking in the field. Upon inoculation with anthracnose (C. sublineola) spores, disease-resistant sorghum (gz93) developed a relative lesion area (RLA) that was significantly smaller than that of the disease-susceptible sorghum (gz234). The leaf thickness, length and profile area of leaf mesophyll cells, upper and lower epidermal cells decreased in the lesion area, with a greater reduction observed in gz234 than in gz93. The damage caused by C. sublineola resulted in a greater decrease in the net photosynthetic rate (Pn) in gz234 than in gz93, with early-stage reduction due to stomatal limitation and late-stage reduction caused by lesions. Overall, the activities of superoxide dismutase (SOD) and catalase (CAT), the content of proline (Pro), abscisic acid (ABA), jasmonic acid (JA), salicylic acid (SA), and gibberellic acid (GA3), are higher in gz93 than in gz234 and may be positively correlated with disease resistance. While malondialdehyde (MDA) may be negatively correlated with disease resistance. Disease-resistant genes are significantly overexpressed in gz93, with significant expression changes in gz234, which is related to disease resistance in sorghum. Correlation analysis indicates that GA3, MDA, peroxidase (POD), and disease-resistance genes can serve as reference indicators for disease severity. The regression equation RLA = 0.029 + 8.02 × 10-6 JA-0.016 GA3 can predict and explain RLA. Principal component analysis (PCA), with the top 5 principal components for physiological and biochemical indicators and the top 2 principal components for disease-resistant genes, can explain 82.37% and 89.11% of their total variance, reducing the number of evaluation indicators. This study provides a basis for research on the mechanisms and breeding of sorghum with resistance to anthracnose.
Collapse
Affiliation(s)
- Songshu Chen
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Zhi Zhao
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xiaojuan Liu
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Kuiyin Li
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
- Anshun University, Anshun, 561000, Guizhou, China
| | - Muhammad Arif
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Beiju Zhang
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Lili Dong
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Rui Wang
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Mingjian Ren
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Xin Xie
- Guizhou Branch of National Wheat Improvement Center, Guizhou Key Laboratory of Propagation and Cultivation On Medicinal Plants, Key Laboratory of Agricultural Microbiology, College of Agriculture, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
3
|
Vela S, Wolf ESA, Rollins JA, Cuevas HE, Vermerris W. Dual-RNA-sequencing to elucidate the interactions between sorghum and Colletotrichum sublineola. FRONTIERS IN FUNGAL BIOLOGY 2024; 5:1437344. [PMID: 39220294 PMCID: PMC11362643 DOI: 10.3389/ffunb.2024.1437344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/19/2024] [Indexed: 09/04/2024]
Abstract
In warm and humid regions, the productivity of sorghum is significantly limited by the fungal hemibiotrophic pathogen Colletotrichum sublineola, the causal agent of anthracnose, a problematic disease of sorghum (Sorghum bicolor (L.) Moench) that can result in grain and biomass yield losses of up to 50%. Despite available genomic resources of both the host and fungal pathogen, the molecular basis of sorghum-C. sublineola interactions are poorly understood. By employing a dual-RNA sequencing approach, the molecular crosstalk between sorghum and C. sublineola can be elucidated. In this study, we examined the transcriptomes of four resistant sorghum accessions from the sorghum association panel (SAP) at varying time points post-infection with C. sublineola. Approximately 0.3% and 93% of the reads mapped to the genomes of C. sublineola and Sorghum bicolor, respectively. Expression profiling of in vitro versus in planta C. sublineola at 1-, 3-, and 5-days post-infection (dpi) indicated that genes encoding secreted candidate effectors, carbohydrate-active enzymes (CAZymes), and membrane transporters increased in expression during the transition from the biotrophic to the necrotrophic phase (3 dpi). The hallmark of the pathogen-associated molecular pattern (PAMP)-triggered immunity in sorghum includes the production of reactive oxygen species (ROS) and phytoalexins. The majority of effector candidates secreted by C. sublineola were predicted to be localized in the host apoplast, where they could interfere with the PAMP-triggered immunity response, specifically in the host ROS signaling pathway. The genes encoding critical molecular factors influencing pathogenicity identified in this study are a useful resource for subsequent genetic experiments aimed at validating their contributions to pathogen virulence. This comprehensive study not only provides a better understanding of the biology of C. sublineola but also supports the long-term goal of developing resistant sorghum cultivars.
Collapse
Affiliation(s)
- Saddie Vela
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Emily S. A. Wolf
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
| | - Jeffrey A. Rollins
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Hugo E. Cuevas
- United States Department of Agriculture, Agricultural Research Service, Tropical Agriculture Research Station, Mayagüez, PR, United States
| | - Wilfred Vermerris
- Plant Molecular & Cellular Biology Graduate Program, University of Florida, Gainesville, FL, United States
- Department of Microbiology & Cell Science, University of Florida, Gainesville, FL, United States
- University of Florida Genetics Institute, Gainesville, FL, United States
| |
Collapse
|
4
|
Dvorianinova EM, Sigova EA, Mollaev TD, Rozhmina TA, Kudryavtseva LP, Novakovskiy RO, Turba AA, Zhernova DA, Borkhert EV, Pushkova EN, Melnikova NV, Dmitriev AA. Comparative Genomic Analysis of Colletotrichum lini Strains with Different Virulence on Flax. J Fungi (Basel) 2023; 10:32. [PMID: 38248942 PMCID: PMC10817032 DOI: 10.3390/jof10010032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/04/2023] [Accepted: 12/24/2023] [Indexed: 01/23/2024] Open
Abstract
Colletotrichum lini is a flax fungal pathogen. The genus comprises differently virulent strains, leading to significant yield losses. However, there were no attempts to investigate the molecular mechanisms of C. lini pathogenicity from high-quality genome assemblies until this study. In this work, we sequenced the genomes of three C. lini strains of high (#390-1), medium (#757), and low (#771) virulence. We obtained more than 100× genome coverage with Oxford Nanopore Technologies reads (N50 = 12.1, 6.1, 5.0 kb) and more than 50× genome coverage with Illumina data (150 + 150 bp). Several assembly strategies were tested. The final assemblies were obtained using the Canu-Racon ×2-Medaka-Polca scheme. The assembled genomes had a size of 54.0-55.3 Mb, 26-32 contigs, N50 values > 5 Mb, and BUSCO completeness > 96%. A comparative genomic analysis showed high similarity among mitochondrial and nuclear genomes. However, a rearrangement event and the loss of a 0.7 Mb contig were revealed. After genome annotation with Funannotate, secreting proteins were selected using SignalP, and candidate effectors were predicted among them using EffectorP. The analysis of the InterPro annotations of predicted effectors revealed unique protein categories in each strain. The assembled genomes and the conducted comparative analysis extend the knowledge of the genetic diversity of C. lini and form the basis for establishing the molecular mechanisms of its pathogenicity.
Collapse
Affiliation(s)
- Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Timur D. Mollaev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Agrarian and Technological Institute, Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia; (T.A.R.); (L.P.K.)
| | | | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Anastasia A. Turba
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia; (E.A.S.); (T.D.M.); (R.O.N.); (A.A.T.); (D.A.Z.); (E.V.B.); (E.N.P.); (N.V.M.)
| |
Collapse
|
5
|
Prom LK, Ahn EJS, Perumal R, Cuevas HE, Rooney WL, Isakeit TS, Magill CW. Genetic Diversity and Classification of Colletotrichum sublineola Pathotypes Using a Standard Set of Sorghum Differentials. J Fungi (Basel) 2023; 10:3. [PMID: 38276019 PMCID: PMC10817050 DOI: 10.3390/jof10010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 01/27/2024] Open
Abstract
Anthracnose, incited by Colletotrichum sublineola, is the most destructive foliar disease of sorghum and, under severe conditions, yield losses can exceed 80% on susceptible cultivars. The hyper-variable nature of the pathogen makes its management challenging despite the occurrence of several resistant sources. In this study, the genetic variability and pathogenicity of 140 isolates of C. sublineola, which were sequenced using restriction site-associated sequencing (RAD-Seq), resulted in 1244 quality SNPs. The genetic relationship based on the SNP data showed low to high genetic diversity based on isolates' origin. Isolates from Georgia and North Carolina were grouped into multiple clusters with some level of genetic relationships to each other. Even though some isolates from Texas formed a cluster, others clustered with isolates from Puerto Rico. The isolates from Puerto Rico showed scattered distribution, indicating the diverse nature of these isolates. A population structure and cluster analysis revealed that the genetic variation was stratified into eight populations and one admixture group. The virulence pattern of 30 sequenced isolates on 18 sorghum differential lines revealed 27 new pathotypes. SC748-5, SC112-14, and Brandes were resistant to all the tested isolates, while BTx623 was susceptible to all. Line TAM428 was susceptible to all the pathotypes, except for pathotype 26. Future use of the 18 differentials employed in this study, which contains cultivars/lines which have been used in the Americas, Asia, and Africa, could allow for better characterization of C. sublineola pathotypes at a global level, thus accelerating the development of sorghum lines with stable resistance to the anthracnose pathogen.
Collapse
Affiliation(s)
- Louis K. Prom
- Crop Germplasm Research Unit, USDA-ARS, 2881 F & B Road, College Station, TX 77845, USA
| | | | - Ramasamy Perumal
- Department of Agronomy, Agricultural Research Center, Kansas State University, Hays, KS 67601, USA;
| | - Hugo E. Cuevas
- Tropical Agriculture Research Station, USDA-ARS, 2200 Pedro Albizu Campos Avenue, Mayaguez, PR 00680, USA;
| | - William L. Rooney
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843, USA;
| | - Thomas S. Isakeit
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (T.S.I.); (C.W.M.)
| | - Clint W. Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA; (T.S.I.); (C.W.M.)
| |
Collapse
|
6
|
Ahn E, Fall C, Botkin J, Curtin S, Prom LK, Magill C. Inoculation and Screening Methods for Major Sorghum Diseases Caused by Fungal Pathogens: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091906. [PMID: 37176964 PMCID: PMC10180756 DOI: 10.3390/plants12091906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/03/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023]
Abstract
Sorghum is the fifth most important crop globally. Researching interactions between sorghum and fungal pathogens is essential to further elucidate plant defense mechanisms to biotic stress, which allows breeders to employ genetic resistance to disease. A variety of creative and useful inoculation and screening methods have been developed by sorghum pathologists to study major fungal diseases. As inoculation and screening methods can be keys for successfully conducting experiments, it is necessary to summarize the techniques developed by this research community. Among many fungal pathogens of sorghum, here we summarize inoculation and screening methods for five important fungal pathogens of sorghum: Claviceps africana, Colletotrichum sublineola, Sporisorium reilianum, Peronosclerospora sorghi and Macrophomina phaseolina. The methods described within will be useful for researchers who are interested in exploring sorghum-fungal pathogen interactions. Finally, we discuss the latest biotechnologies and methods for studying plant-fungal pathogen interactions and their applicability to sorghum pathology.
Collapse
Affiliation(s)
- Ezekiel Ahn
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
| | - Coumba Fall
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Jacob Botkin
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA
| | - Shaun Curtin
- USDA-ARS Plant Science Research Unit, St. Paul, MN 55108, USA
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
- Center for Plant Precision Genomics, University of Minnesota, St. Paul, MN 55108, USA
- Center for Genome Engineering, University of Minnesota, St. Paul, MN 55108, USA
| | - Louis K Prom
- USDA-ARS Southern Plains Agricultural Research Center, College Station, TX 77845, USA
| | - Clint Magill
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
7
|
Xiong W, Liao L, Ni Y, Gao H, Yang J, Guo Y. The Effects of Epicuticular Wax on Anthracnose Resistance of Sorghum bicolor. Int J Mol Sci 2023; 24:ijms24043070. [PMID: 36834482 PMCID: PMC9964091 DOI: 10.3390/ijms24043070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/17/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Cuticular waxes are mixtures of hydrophobic compounds covering land plant surfaces and play key roles in plant resistance to abiotic and biotic stresses. However, it is still not clear whether the epicuticular wax could protect the plants from infection by anthracnose, one of the most important plant diseases worldwide, which seriously infects sorghum and causes great yield loss. In this study, Sorghum bicolor L., an important C4 crop with high wax coverage, was selected to analyze the relationship between epicuticular wax (EW) and anthracnose resistance. In vitro analysis indicated that the sorghum leaf wax significantly inhibited the anthracnose mycelium growth of anthracnose on potato dextrose agar (PDA) medium, with the plaque diameter smaller than that grown on medium without wax. Then, the EWs were removed from the intact leaf with gum acacia, followed by the inoculation of Colletotrichum sublineola. The results indicated that the disease lesion was remarkably aggravated on leaves without EW, which showed decreased net photosynthetic rate and increased intercellular CO2 concentrations and malonaldehyde content three days after inoculation. Transcriptome analysis further indicated that 1546 and 2843 differentially expressed genes (DEGs) were regulated by C. sublineola infection in plants with and without EW, respectively. Among the DEG encoded proteins and enriched pathways regulated by anthracnose infection, the cascade of the mitogen-activated protein kinases (MAPK) signaling pathway, ABC transporters, sulfur metabolism, benzoxazinoid biosynthesis, and photosynthesis were mainly regulated in plants without EW. Overall, the EW increases plant resistance to C. sublineola by affecting physiological and transcriptome responses through sorghum epicuticular wax, improving our understanding of its roles in defending plants from fungi and ultimately benefiting sorghum resistance breeding.
Collapse
Affiliation(s)
- Wangdan Xiong
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Longxin Liao
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yu Ni
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Hanchi Gao
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianfeng Yang
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
| | - Yanjun Guo
- Qingdao Key Laboratory of Specialty Plant Germplasm Innovation and Utilization in Saline Soils of Coastal Beach, Qingdao Agricultural University, Qingdao 266109, China
- Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, Qingdao Agricultural University, Qingdao 266109, China
- College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
- Correspondence:
| |
Collapse
|
8
|
Identification and Characterization of Colletotrichum Species Causing Sorghum Anthracnose in Kenya and Screening of Sorghum Germplasm for Resistance to Anthracnose. J Fungi (Basel) 2023; 9:jof9010100. [PMID: 36675921 PMCID: PMC9864066 DOI: 10.3390/jof9010100] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/26/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Anthracnose caused by Colletotrichum species is one of the most destructive fungal diseases of sorghum with annual yield losses of up to 100%. Although the resistance to anthracnose has been identified elsewhere, the usefulness of the resistance loci differs depending on the pathogen species and pathotypes. Accurate species identification of the disease-causing fungal pathogens is essential for developing and implementing suitable management strategies. The use of host resistance is the most effective strategy of anthracnose management and therefore identification of sources for resistance against unique pathogen pathotypes is fundamental. The aims of this study were to identify and characterize Colletotrichum species associated with sorghum anthracnose and screen sorghum germplasm for resistance to anthracnose. Symptomatic sorghum leaf samples were collected from smallholder farmers in lower eastern Kenya and used for the isolation, identification and characterization of Colletotrichum species using morpho-cultural and phylogenetic analyses with the sequences of the rDNA internal transcribed spacer (ITS) region. Pathogenicity tests of the seven fungal isolates showed that there were no significant differences in the pathogenicity on host plants. The fungal isolates were variable in cultural and morphological characters such as colony type and color, colony diameter, mycelia growth and hyaline. The phenotypic characters observed were useful in the identification of the genus Colletotrichum and not the species. Based on the sequence and phylogenetic analysis of ITS, Colletotrichum sublineola was revealed to be associated with anthracnose on sorghum. Germplasm screening for resistance to anthracnose showed differential reactions of sorghum genotypes to anthracnose under greenhouse and field conditions. The results revealed four resistant genotypes and ten susceptible genotypes against Colletotrichum sublineola. Significant (p ≤ 0.05) differences were observed in grain weight, grain yield, weight of 100 seeds and harvest index among the tested sorghum genotypes. The present study indicated that the Kenyan accessions could be an important source of resistance to anthracnose. The findings from this study provide a platform towards devising efficient disease control strategies and resistance breeding.
Collapse
|
9
|
Khanal A, Adhikari P, Kaiser C, Lipka AE, Jamann TM, Mideros SX. Genetic mapping of sorghum resistance to an Illinois isolate of Colletotrichum sublineola. THE PLANT GENOME 2022; 15:e20243. [PMID: 35822435 DOI: 10.1002/tpg2.20243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Anthracnose leaf blight (ALB) is an economically important disease of sorghum [Sorghum bicolor (L.) Moench] caused by the fungal pathogen Colletotrichum sublineola Henn. ex Sacc. & Trotter. Although qualitative and quantitative resistance have been identified for ALB, the usefulness of resistance loci differs depending on the pathogen pathotype. Identifying resistance effective against unique pathogen pathotypes is critical to managing ALB, as the disease is managed primarily through the deployment of host resistance. We isolated C. sublineola from ALB-infected leaves collected in Illinois and found that the strain was a novel pathotype, as it produced a unique combination of virulence against a set of differential lines. Using this isolate, we inoculated 579 temperate-adapted sorghum conversion lines in 2019 and 2020. We then conducted a genome-wide association study (GWAS) and a metabolic pathway analysis using the Pathway Associated Study Tool (PAST). We identified 47 significant markers distributed across all chromosomes except chromosome 8. We identified 32 candidate genes based on physical proximity with significant markers, some of which have a known role in host defense. We identified 47 pathways associated with ALB resistance, indicating a role for secondary metabolism in defense to ALB. Our results are important to improve the understanding of the genetic basis of ALB resistance in sorghum and highlight the importance of developing durable resistance to ALB.
Collapse
Affiliation(s)
- Ashmita Khanal
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Pragya Adhikari
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Christopher Kaiser
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Alexander E Lipka
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Tiffany M Jamann
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| | - Santiago X Mideros
- Dep. of Crop Sciences, Univ. of Illinois at Urbana-Champaign, Urbana, IL, 61802, USA
| |
Collapse
|
10
|
Sun X, Li A, Ma G, Zhao S, Liu L. Transcriptome analysis provides insights into the bases of salicylic acid-induced resistance to anthracnose in sorghum. PLANT MOLECULAR BIOLOGY 2022; 110:69-80. [PMID: 35793006 DOI: 10.1007/s11103-022-01286-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Key Message Transcriptome analysis of SA sensitive and tolerant lines indicates that SA enhances anthracnose resistance in sorghum by upregulating the expression of some immune-related genes and pathways.Abstract Anthracnose caused by the hemibiotrophic pathogen Colletotrichum sublineolum is one of the most destructive diseases of sorghum, the fifth most important cereal crop in the world. Salicylic acid (SA) is a phytohormone essential for plant immunity; however, the role of SA in sorghum resistance to anthracnose has not been well explored. In this study, we found that Colletotrichum sublineolum infection induced the expression of SA-responsive genes and that exogenous SA enhanced resistance to anthracnose in the sorghum line BTx623. To rule out the possibility that SA triggers anthracnose resistance in sorghum by its direct toxic function on pathogen, an SA-tolerant line, WHEATLAND, was identified, and we found that SA treatment could not induce anthracnose resistance in WHEATLAND. Then, SA-induced transcriptome changes during Colletotrichum sublineolum infection in BTx623 and WHEATLAND were analyzed to explore the molecular mechanism of SA-triggered resistance. SA pretreatment regulated the expression of 2125 genes in BTx623 but only 524 genes in WHEATLAND during Colletotrichum sublineolum infection. The cutin, suberine and wax biosynthesis pathway involved in the plant immune response and the flavonoid biosynthesis pathway involved in anthracnose resistance were enriched in BTx623-specifically upregulated genes. Additionally, some immune-related genes, including multiple resistance genes, were differentially expressed in BTx623 and WHEATLAND. Taken together, our results revealed the mechanisms of SA-induced anthracnose resistance in sorghum at the transcriptional level and shed light on the possibility of enhancing sorghum resistance to anthracnose by activating the SA signaling pathway by molecular breeding.
Collapse
Affiliation(s)
- Xue Sun
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Aixia Li
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Guojing Ma
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Shuangyi Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China
| | - Lijing Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, 266237, Qingdao, China.
| |
Collapse
|
11
|
Rizvi A, Ahmed B, Khan MS, Umar S, Lee J. Sorghum-Phosphate Solubilizers Interactions: Crop Nutrition, Biotic Stress Alleviation, and Yield Optimization. FRONTIERS IN PLANT SCIENCE 2021; 12:746780. [PMID: 34925401 PMCID: PMC8671763 DOI: 10.3389/fpls.2021.746780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 11/01/2021] [Indexed: 06/14/2023]
Abstract
Sweet sorghum [Sorghum bicolor (L.) Moench] is a highly productive, gluten-free cereal crop plant that can be used as an alternative energy resource, human food, and livestock feed or for biofuel-ethanol production. Phosphate fertilization is a common practice to optimize sorghum yield but because of high cost, environmental hazards, and soil fertility reduction, the use of chemical P fertilizer is discouraged. Due to this, the impetus to search for an inexpensive and eco-friendly microbiome as an alternative to chemical P biofertilizer has been increased. Microbial formulations, especially phosphate solubilizing microbiome (PSM) either alone or in synergism with other rhizobacteria, modify the soil nutrient pool and augment the growth, P nutrition, and yield of sorghum. The use of PSM in sorghum disease management reduces the dependence on pesticides employed to control the phytopathogens damage. The role of PSM in the sorghum cultivation system is, however, relatively unresearched. In this manuscript, the diversity and the strategies adopted by PSM to expedite sorghum yield are reviewed, including the nutritional importance of sorghum in human health and the mechanism of P solubilization by PSM. Also, the impact of solo or composite inoculations of biological enhancers (PSM) with nitrogen fixers or arbuscular mycorrhizal fungi is explained. The approaches employed by PSM to control sorghum phytopathogens are highlighted. The simultaneous bio-enhancing and biocontrol activity of the PS microbiome provides better options for the replacement of chemical P fertilizers and pesticide application in sustainable sorghum production practices.
Collapse
Affiliation(s)
- Asfa Rizvi
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Bilal Ahmed
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Mohammad Saghir Khan
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh, India
| | - Shahid Umar
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, India
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
12
|
Variation in Gene Expression between Two Sorghum bicolor Lines Differing in Innate Immunity Response. PLANTS 2021; 10:plants10081536. [PMID: 34451580 PMCID: PMC8399927 DOI: 10.3390/plants10081536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 11/24/2022]
Abstract
Microbe associated molecular pattern (MAMPs) triggered immunity (MTI) is a key component of the plant innate immunity response to microbial recognition. However, most of our current knowledge of MTI comes from model plants (i.e., Arabidopsis thaliana) with comparatively less work done using crop plants. In this work, we studied the MAMP triggered oxidative burst (ROS) and the transcriptional response in two Sorghum bicolor genotypes, BTx623 and SC155-14E. SC155-14E is a line that shows high anthracnose resistance and the line BTx623 is susceptible to anthracnose. Our results revealed a clear variation in gene expression and ROS in response to either flagellin (flg22) or chitin elicitation between the two lines. While the transcriptional response to each MAMP and in each line was unique there was a considerable degree of overlap, and we were able to define a core set of genes associated with the sorghum MAMP transcriptional response. The GO term and KEGG pathway enrichment analysis discovered more immunity and pathogen resistance related DEGs in MAMP treated SC155-14E samples than in BTx623 with the same treatment. The results provide a baseline for future studies to investigate innate immunity pathways in sorghum, including efforts to enhance disease resistance.
Collapse
|