1
|
Messant M, Hani U, Hennebelle T, Guérard F, Gakière B, Gall A, Thomine S, Krieger-Liszkay A. Manganese concentration affects chloroplast structure and the photosynthetic apparatus in Marchantia polymorpha. PLANT PHYSIOLOGY 2023; 192:356-369. [PMID: 36722179 DOI: 10.1093/plphys/kiad052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 05/03/2023]
Abstract
Manganese (Mn) is an essential metal for plant growth. The most important Mn-containing enzyme is the Mn4CaO5 cluster that catalyzes water oxidation in photosystem II (PSII). Mn deficiency primarily affects photosynthesis, whereas Mn excess is generally toxic. Here, we studied Mn excess and deficiency in the liverwort Marchantia polymorpha, an emerging model ideally suited for analysis of metal stress since it accumulates rapidly toxic substances due to the absence of well-developed vascular and radicular systems and a reduced cuticle. We established growth conditions for Mn excess and deficiency and analyzed the metal content in thalli and isolated chloroplasts. In vivo super-resolution fluorescence microscopy and transmission electron microscopy revealed changes in the organization of the thylakoid membrane under Mn excess and deficiency. Both Mn excess and Mn deficiency increased the stacking of the thylakoid membrane. We investigated photosynthetic performance by measuring chlorophyll fluorescence at room temperature and 77 K, measuring P700 absorbance, and studying the susceptibility of thalli to photoinhibition. Nonoptimal Mn concentrations changed the ratio of PSI to PSII. Upon Mn deficiency, higher non-photochemical quenching was observed, electron donation to PSI was favored, and PSII was less susceptible to photoinhibition. Mn deficiency seemed to favor cyclic electron flow around PSI, thereby protecting PSII in high light. The results presented here suggest an important role of Mn in the organization of the thylakoid membrane and photosynthetic electron transport.
Collapse
Affiliation(s)
- Marine Messant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Umama Hani
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Thaïs Hennebelle
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Florence Guérard
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay, CNRS, Université Paris-Sud, Institut National de la Recherche Agronomique, Université d'Evry, Université Paris-Diderot, Université Paris-Saclay, 91405 Orsay Cedex, France
| | - Andrew Gall
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Sébastien Thomine
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| | - Anja Krieger-Liszkay
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198 Gif-sur-Yvette cedex, France
| |
Collapse
|
2
|
Santana‐Sánchez A, Nikkanen L, Werner E, Tóth G, Ermakova M, Kosourov S, Walter J, He M, Aro E, Allahverdiyeva Y. Flv3A facilitates O 2 photoreduction and affects H 2 photoproduction independently of Flv1A in diazotrophic Anabaena filaments. THE NEW PHYTOLOGIST 2023; 237:126-139. [PMID: 36128660 PMCID: PMC10092803 DOI: 10.1111/nph.18506] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/10/2022] [Indexed: 05/23/2023]
Abstract
The model heterocyst-forming filamentous cyanobacterium Anabaena sp. PCC 7120 (Anabaena) is a typical example of a multicellular organism capable of simultaneously performing oxygenic photosynthesis in vegetative cells and O2 -sensitive N2 -fixation inside heterocysts. The flavodiiron proteins have been shown to participate in photoprotection of photosynthesis by driving excess electrons to O2 (a Mehler-like reaction). Here, we performed a phenotypic and biophysical characterization of Anabaena mutants impaired in vegetative-specific Flv1A and Flv3A in order to address their physiological relevance in the bioenergetic processes occurring in diazotrophic Anabaena under variable CO2 conditions. We demonstrate that both Flv1A and Flv3A are required for proper induction of the Mehler-like reaction upon a sudden increase in light intensity, which is likely important for the activation of carbon-concentrating mechanisms and CO2 fixation. Under ambient CO2 diazotrophic conditions, Flv3A is responsible for moderate O2 photoreduction, independently of Flv1A, but only in the presence of Flv2 and Flv4. Strikingly, the lack of Flv3A resulted in strong downregulation of the heterocyst-specific uptake hydrogenase, which led to enhanced H2 photoproduction under both oxic and micro-oxic conditions. These results reveal a novel regulatory network between the Mehler-like reaction and the diazotrophic metabolism, which is of great interest for future biotechnological applications.
Collapse
Affiliation(s)
- Anita Santana‐Sánchez
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Lauri Nikkanen
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Elisa Werner
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Gábor Tóth
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Maria Ermakova
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Sergey Kosourov
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Julia Walter
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Meilin He
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Eva‐Mari Aro
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life TechnologiesUniversity of TurkuTurkuFI‐20014Finland
| |
Collapse
|
3
|
Regulation of the generation of reactive oxygen species during photosynthetic electron transport. Biochem Soc Trans 2022; 50:1025-1034. [PMID: 35437580 DOI: 10.1042/bst20211246] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Light capture by chlorophylls and photosynthetic electron transport bury the risk of the generation of reactive oxygen species (ROS) including singlet oxygen, superoxide anion radicals and hydrogen peroxide. Rapid changes in light intensity, electron fluxes and accumulation of strong oxidants and reductants increase ROS production. Superoxide is mainly generated at the level of photosystem I while photosystem II is the main source of singlet oxygen. ROS can induce oxidative damage of the photosynthetic apparatus, however, ROS are also important to tune processes inside the chloroplast and participate in retrograde signalling regulating the expression of genes involved in acclimation responses. Under most physiological conditions light harvesting and photosynthetic electron transport are regulated to keep the level of ROS at a non-destructive level. Photosystem II is most prone to photoinhibition but can be quickly repaired while photosystem I is protected in most cases. The size of the transmembrane proton gradient is central for the onset of mechanisms that protect against photoinhibition. The proton gradient allows dissipation of excess energy as heat in the antenna systems and it regulates electron transport. pH-dependent slowing down of electron donation to photosystem I protects it against ROS generation and damage. Cyclic electron transfer and photoreduction of oxygen contribute to the size of the proton gradient. The yield of singlet oxygen production in photosystem II is regulated by changes in the midpoint potential of its primary quinone acceptor. In addition, numerous antioxidants inside the photosystems, the antenna and the thylakoid membrane quench or scavenge ROS.
Collapse
|