1
|
Wojszko K, Różańska E, Sobczak M, Kuczerski K, Krępski T, Wiśniewska A. The role of AtPP2-A3 and AtPP2-A8 genes encoding Nictaba-related lectin domains in the defense response of Arabidopsis thaliana to Heterodera schachtii. PLANTA 2023; 258:40. [PMID: 37420105 PMCID: PMC10329053 DOI: 10.1007/s00425-023-04196-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/27/2023] [Indexed: 07/09/2023]
Abstract
MAIN CONCLUSION Expression levels of AtPP2-A3 and AtPP2-A8 are reduced in syncytia induced by Heterodera schachtii and decline of their expression levels decreases host susceptibility, whereas their overexpression promotes susceptibility to parasite. Plant-parasitic nematodes cause huge crop losses worldwide. Heterodera schachtii is a sedentary cyst-forming nematode that induces a feeding site called a syncytium via the delivery of secreted chemical substances (effectors) to host cells, which modulate host genes expression and phytohormone regulation patterns. Genes encoding the Nictaba-related lectin domain have been found among the plant genes with downregulated expression during the development of syncytia induced by H. schachtii in Arabidopsis thaliana roots. To investigate the role of two selected Nictaba-related genes in the plant response to beet cyst nematode parasitism, mutants and plants overexpressing AtPP2-A3 or AtPP2-A8 were infected, and promoter activity and protein localization were analyzed. In wild-type plants, AtPP2-A3 and AtPP2-A8 were expressed only in roots, especially in the cortex and rhizodermis. After nematode infection, their expression was switched off in regions surrounding a developing syncytium. Astonishingly, plants overexpressing AtPP2-A3 or AtPP2-A8 were more susceptible to nematode infection than wild-type plants, whereas mutants were less susceptible. Based on these results and changes in AtPP2-A3 and AtPP2-A8 expression patterns after treatments with different stress phytohormones, we postulate that the AtPP2-A3 and AtPP2-A8 genes play important roles in the defense response to beet cyst nematode infection.
Collapse
Affiliation(s)
- Kamila Wojszko
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Elżbieta Różańska
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Mirosław Sobczak
- Department of Botany, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Karol Kuczerski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Tomasz Krępski
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland
| | - Anita Wiśniewska
- Department of Plant Physiology, Institute of Biology, Warsaw University of Life Sciences, SGGW, Nowoursynowska 159, 02-776, Warsaw, Poland.
| |
Collapse
|
2
|
Wen G, Xie Z, Yang Y, Yang Y, Guo Q, Liang G, Dang J. NpPP2-B10, an F-Box-Nictaba Gene, Promotes Plant Growth and Resistance to Black Shank Disease Incited by Phytophthora nicotianae in Nicotiana tabacum. Int J Mol Sci 2023; 24:ijms24087353. [PMID: 37108517 PMCID: PMC10138871 DOI: 10.3390/ijms24087353] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/09/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Black shank, a devastating disease affecting tobacco production worldwide, is caused by Phytophthora nicotianae. However, few genes related to Phytophthora resistance have been reported in tobacco. Here, we identified NpPP2-B10, a gene strongly induced by P. nicotianae race 0, with a conserved F-box motif and Nictaba (tobacco lectin) domain, in the highly resistant tobacco species Nicotiana plumbaginifolia. NpPP2-B10 is a typical F-box-Nictaba gene. When it was transferred into the black shank-susceptible tobacco cultivar 'Honghua Dajinyuan', it was found to promote resistance to black shank disease. NpPP2-B10 was induced by salicylic acid, and some resistance-related genes (NtPR1, NtPR2, NtCHN50, and NtPAL) and resistance-related enzymes (catalase and peroxidase) were significantly upregulated in the overexpression lines after infection with P. nicotianae. Furthermore, we showed that NpPP2-B10 actively regulated the tobacco seed germination rate, growth rate, and plant height. The erythrocyte coagulation test of purified NpPP2-B10 protein showed that NpPP2-B10 had plant lectin activity, and the lectin content in the overexpression lines was significantly higher than that in the WT, which could lead to accelerated growth and improved resistance of tobacco. SKP1 is an adaptor protein of the E3 ubiquitin ligase SKP1, Cullin, F-box (SCF) complex. We demonstrated that NpPP2-B10 could interact with the NpSKP1-1A gene in vivo and in vitro through yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC), indicating that NpPP2-B10 likely participates in the plant immune response by mediating the ubiquitin protease pathway. In conclusion, our study provides some important insights concerning NpPP2-B10-mediated regulation of tobacco growth and resistance.
Collapse
Affiliation(s)
- Guo Wen
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhongyi Xie
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Yao Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Yuxue Yang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Qigao Guo
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Guolu Liang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Jiangbo Dang
- Key Laboratory of Horticulture Science for Southern Mountains Regions of Ministry of Education, College of Horticulture and Landscape Architecture, Southwest University, Chongqing 400715, China
- Academy of Agricultural Sciences of Southwest University, State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Beihammer G, Romero-Pérez A, Maresch D, Figl R, Mócsai R, Grünwald-Gruber C, Altmann F, Van Damme EJM, Strasser R. Pseudomonas syringae DC3000 infection increases glucosylated N-glycans in Arabidopsis thaliana. Glycoconj J 2023; 40:97-108. [PMID: 36269466 PMCID: PMC9925501 DOI: 10.1007/s10719-022-10084-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/04/2022]
Abstract
Studying the interaction between the hemibiotrophic bacterium Pseudomonas syringae pv. tomato DC3000 and Arabidopsis thaliana has shed light onto the various forms of mechanisms plants use to defend themselves against pathogen attack. While a lot of emphasis has been put on investigating changes in protein expression in infected plants, only little information is available on the effect infection plays on the plants N-glycan composition. To close this gap in knowledge, total N-glycans were enriched from P. syringae DC3000-infected and mock treated Arabidopsis seedlings and analyzed via MALDI-TOF-MS. Additionally, fluorescently labelled N-glycans were quantified via HPLC-FLD. N-glycans from infected plants were overall less processed and displayed increased amounts of oligomannosidic N-glycans. As multiple peaks for certain oligomannosidic glycoforms were detected upon separation via liquid chromatography, a porous graphitic carbon (PGC)-analysis was conducted to separate individual N-glycan isomers. Indeed, multiple different N-glycan isomers with masses of two N-acetylhexosamine residues plus 8, 9 or 10 hexoses were detected in the infected plants which were absent in the mock controls. Treatment with jack bean α-mannosidase resulted in incomplete removal of hexoses from these N-glycans, indicating the presence of glucose residues. This hints at the accumulation of misfolded glycoproteins in the infected plants, likely because of endoplasmic reticulum (ER) stress. In addition, poly-hexose structures susceptible to α-amylase treatment were found in the DC3000-infected plants, indicating alterations in starch metabolism due to the infection process.
Collapse
Affiliation(s)
- Gernot Beihammer
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Andrea Romero-Pérez
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Daniel Maresch
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Rudolf Figl
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Réka Mócsai
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Friedrich Altmann
- Institute of Biochemistry, Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Els J M Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria.
| |
Collapse
|
4
|
Okamoto N, Maeda M, Yamamoto C, Kodama R, Sugimoto K, Shinozaki Y, Ezura H, Kimura Y. Construction of tomato plants with suppressed endo-β-N-acetylglucosaminidase activity using CRISPR-Cas9 mediated genome editing. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 190:203-211. [PMID: 36130423 DOI: 10.1016/j.plaphy.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/27/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
High mannose-type free N-glycans with a single N-acetyl-D-glucosamine (GlcNAc) residue at the reducing end (GN1-HMT-FNGs) are produced by cytosolic endo-β-N-acetylglucosaminidase (EC:3.2.1.96) (ENGase) and are ubiquitous in differentiating and growing plant cells. To elucidate the physiological functions of HMT-FNGs in plants, we identified the ENGase gene in tomato (Solyc06g050930) and detected ENGase activity and increased production of GN1-HMT-FNGs during tomato fruit maturation. However, the precise role of GN1-HMT-FNGs in fruit maturation remains unclear. In this study, we established tomato ENGase mutants with suppressed ENGase activity via CRISPR/Cas9 genome editing technology. DNA sequencing of the Δeng mutants (T0 and T1 generations) revealed that they had the same mutations in the genomic DNA around the target sequences. Three null CRISPR/Cas9 segregant plants of the T1 generation (Δeng1-2, -22, and -26) were used to measure ENGase activity and analyze the structural features of HMT-FNGs in the leaves. The Δeng mutants did not exhibit ENGase activity and produced GN2-HMT-FNGs bearing tow GlcNAc residues at the reducing end side instead of GN1-HMT-FNGs. The Δeng mutants lack the N-terminal region of ENGase, indicating that the N-terminal region is important for full ENGase activity. The fruits of Δeng mutants (T2 generation) also showed loss of ENGase activity and similar structural features of HMT-FNGs of the T1 generation. However, there was no significant difference in fruit maturation between the T2 generation of the Δeng mutants and the wild type. The Δeng mutants rich in GN2-HMT-FNGs could be offered as a new tomato that is different from wild type containing GN1-HMT-FNGs.
Collapse
Affiliation(s)
- Naoko Okamoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Megumi Maeda
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| | - Chiharu Yamamoto
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Reo Kodama
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Koichi Sugimoto
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshihito Shinozaki
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiroshi Ezura
- Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki, Japan
| | - Yoshinobu Kimura
- Department of Biofunctional Chemistry, Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
5
|
Cheng SS, Ku YS, Cheung MY, Lam HM. Identification of stably expressed reference genes for expression studies in Arabidopsis thaliana using mass spectrometry-based label-free quantification. FRONTIERS IN PLANT SCIENCE 2022; 13:1001920. [PMID: 36247637 PMCID: PMC9557097 DOI: 10.3389/fpls.2022.1001920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/29/2022] [Indexed: 06/16/2023]
Abstract
Arabidopsis thaliana has been used regularly as a model plant in gene expression studies on transcriptional reprogramming upon pathogen infection, such as that by Pseudomonas syringae pv. tomato DC3000 (Pst DC3000), or when subjected to stress hormone treatments including jasmonic acid (JA), salicylic acid (SA), and abscisic acid (ABA). Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) has been extensively employed to quantitate these gene expression changes. However, the accuracy of the quantitation is largely dependent on the stability of the expressions of reference genes used for normalization. Recently, RNA sequencing (RNA-seq) has been widely used to mine stably expressed genes for use as references in RT-qPCR. However, the amplification step in RNA-seq creates an intrinsic bias against those genes with relatively low expression levels, and therefore does not provide an accurate quantification of all expressed genes. In this study, we employed mass spectrometry-based label-free quantification (LFQ) in proteomic analyses to identify those proteins with abundances unaffected by Pst DC3000 infection. We verified, using RT-qPCR, that the levels of their corresponding mRNAs were also unaffected by Pst DC3000 infection. Compared to commonly used reference genes for expression studies in A. thaliana upon Pst DC3000 infection, the candidate reference genes reported in this study generally have a higher expression stability. In addition, using RT-qPCR, we verified that the mRNAs of the candidate reference genes were stably expressed upon stress hormone treatments including JA, SA, and ABA. Results indicated that the candidate genes identified here had stable expressions upon these stresses and are suitable to be used as reference genes for RT-qPCR. Among the 18 candidate reference genes reported in this study, many of them had greater expression stability than the commonly used reference genes, such as ACT7, in previous studies. Here, besides proposing more appropriate reference genes for Arabidopsis expression studies, we also demonstrated the capacity of mass spectrometry-based LFQ to quantify protein abundance and the possibility to extend protein expression studies to the transcript level.
Collapse
|
6
|
Zuo R, Xie M, Gao F, Sumbal W, Cheng X, Liu Y, Bai Z, Liu S. The Characterization of the Phloem Protein 2 Gene Family Associated with Resistance to Sclerotinia sclerotiorum in Brassica napus. Int J Mol Sci 2022; 23:3934. [PMID: 35409295 PMCID: PMC8999561 DOI: 10.3390/ijms23073934] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/04/2023] Open
Abstract
In plants, phloem is not only a vital structure that is used for nutrient transportation, but it is also the location of a response that defends against various stresses, named phloem-based defense (PBD). Phloem proteins (PP2s) are among the predominant proteins in phloem, indicating their potential functional role in PBD. Sclerotinia disease (SD), which is caused by the necrotrophic fungal pathogen S. sclerotiorum (Sclerotinia sclerotiorum), is a devastating disease that affects oil crops, especially Brassica napus (B. napus), mainly by blocking nutrition and water transportation through xylem and phloem. Presently, the role of PP2s in SD resistance is still largely estimated. Therefore, in this study, we identified 62 members of the PP2 gene family in the B. napus genome with an uneven distribution across the 19 chromosomes. A phylogenetic analysis classified the BnPP2s into four clusters (I-IV), with cluster I containing the most members (28 genes) as a consequence of its frequent genome segmental duplication. A comparison of the gene structures and conserved motifs suggested that BnPP2 genes were well conserved in clusters II to IV, but were variable in cluster I. Interestingly, the motifs in different clusters displayed unique features, such as motif 6 specifically existing in cluster III and motif 1 being excluded from cluster IV. These results indicated the possible functional specification of BnPP2s. A transcriptome data analysis showed that the genes in clusters II to IV exhibited dynamic expression alternation in tissues and the stimulation of S. sclerotiorum, suggesting that they could participate in SD resistance. A GWAS analysis of a rapeseed population comprising 324 accessions identified four BnPP2 genes that were potentially responsible for SD resistance and a transgenic study that was conducted by transiently expressing BnPP2-6 in tobacco (Nicotiana tabacum) leaves validated their positive role in regulating SD resistance in terms of reduced lesion size after inoculation with S. sclerotiorum hyphal plugs. This study provides useful information on PP2 gene functions in B. napus and could aid elaborated functional studies on the PP2 gene family.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zetao Bai
- Key Laboratory of Biology and Genetics Improvement of Oil Crops, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Ministry of Agriculture and Rural Affairs, Wuhan 430062, China; (R.Z.); (M.X.); (F.G.); (W.S.); (X.C.); (Y.L.); (S.L.)
| | | |
Collapse
|
7
|
Control of Early Blight Fungus (Alternaria alternata) in Tomato by Boric and Phenylboronic Acid. Antibiotics (Basel) 2022; 11:antibiotics11030320. [PMID: 35326783 PMCID: PMC8944593 DOI: 10.3390/antibiotics11030320] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/24/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
Finding a suitable alternative to the small pool of existing antifungal agents is a vital task in contemporary agriculture. Therefore, intensive research has been conducted globally to uncover environmentally friendly and efficient agents that can suppress pathogens resistant to the currently used antimycotics. Here, we tested the activity of boric acid (BA) and its derivative phenylboronic acid (PBA) in controlling the early blight symptoms in tomato plants infected with pathogenic fungus Alternaria alternata. By following the appearance and intensity of the lesions on leaves of the tested plants, as well as by measuring four selected physiological factors that reflect plant health, we have shown that both BA and PBA act prophylactically on fungal infection. They did it by reducing the amount and severity of early blight symptoms, as well as by preventing deterioration of the physiological traits, occurring upon fungal inoculation. Phenylboronic acid was more efficient in suppressing the impact of A. alternata infection. Therefore, we conclude that BA, and even more so PBA, may be used as agents for controlling early blight on tomato plants, as they are both quite effective and environmentally friendly.
Collapse
|
8
|
De Coninck T, Van Damme EJM. Review: The multiple roles of plant lectins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111096. [PMID: 34763880 DOI: 10.1016/j.plantsci.2021.111096] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 10/14/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
For decades, the biological roles of plant lectins remained obscure and subject to speculation. With the advent of technological and scientific progress, researchers have compiled a vast amount of information regarding the structure, biological activities and functionality of hundreds of plant lectins. Data mining of genomes and transcriptome sequencing and high-throughput analyses have resulted in new insights. This review aims to provide an overview of what is presently known about plant lectins, highlighting their versatility and the importance of plant lectins for a multitude of biological processes, such as plant development, immunity, stress signaling and regulation of gene expression. Though lectins primarily act as readers of the glycocode, the multiple roles of plant lectins suggest that their functionality goes beyond carbohydrate-recognition.
Collapse
Affiliation(s)
- Tibo De Coninck
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| | - Els J M Van Damme
- Laboratory of Glycobiology & Biochemistry, Dept. of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium.
| |
Collapse
|