1
|
Hu S, Zeng X, Liu Y, Li Y, Qu M, Jiao WB, Han Y, Kang C. Global characterization of somatic mutations and DNA methylation changes during vegetative propagation in strawberries. Genome Res 2024; 34:1582-1594. [PMID: 39406501 PMCID: PMC11529994 DOI: 10.1101/gr.279378.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/16/2024] [Indexed: 11/01/2024]
Abstract
Somatic mutations arise and accumulate during tissue culture and vegetative propagation, potentially affecting various traits in horticultural crops, but their characteristics are still unclear. Here, somatic mutations in regenerated woodland strawberry derived from tissue culture of shoot tips under different conditions and 12 cultivated strawberry individuals are analyzed by whole genome sequencing. The mutation frequency of single nucleotide variants is significantly increased with increased hormone levels or prolonged culture time in the range of 3.3 × 10-8-3.0 × 10-6 mutations per site. CG methylation shows a stable reduction (0.71%-8.03%) in regenerated plants, and hypoCG-DMRs are more heritable after sexual reproduction. A high-quality haplotype-resolved genome is assembled for the strawberry cultivar "Beni hoppe." The 12 "Beni hoppe" individuals randomly selected from different locations show 4731-6005 mutations relative to the reference genome, and the mutation frequency varies among the subgenomes. Our study has systematically characterized the genetic and epigenetic variants in regenerated woodland strawberry plants and different individuals of the same strawberry cultivar, providing an accurate assessment of somatic mutations at the genomic scale and nucleotide resolution in plants.
Collapse
Affiliation(s)
- Shaoqiang Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiangguo Zeng
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Yuguo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongping Li
- School of Breeding and Multiplication, Hainan University, Sanya 572025, China
| | - Minghao Qu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Plant Germplasm Research Center, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei 430074, China
| | - Wen-Biao Jiao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Yongchao Han
- Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430063, China;
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China;
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
2
|
Zhang J, Liu S, Zhao S, Nie Y, Zhang Z. A telomere-to-telomere haplotype-resolved genome of white-fruited strawberry reveals the complexity of fruit colour formation of cultivated strawberry. PLANT BIOTECHNOLOGY JOURNAL 2024. [PMID: 39303078 DOI: 10.1111/pbi.14479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/27/2024] [Accepted: 09/06/2024] [Indexed: 09/22/2024]
Affiliation(s)
- Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuang Liu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Shuo Zhao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuxin Nie
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Wang Z, Liu J, Qi X, Su D, Yang J, Cui X. Study of Endogenous Viruses in the Strawberry Plants. Viruses 2024; 16:1306. [PMID: 39205280 PMCID: PMC11359110 DOI: 10.3390/v16081306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/12/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
Endogenous viral elements (EVEs) have been reported to exist widely in the genomes of eukaryotic organisms, and they are closely associated with the growth, development, genetics, adaptation, and evolution of their hosts. In this study, two methods-homologous sequence search and genome alignment-were used to explore the endogenous viral sequences in the genomes of Fragaria species. Results revealed abundant endogenous pararetroviruses (EPRVs) in the genomes of Fragaria species, including 786 sequences belonging to five known taxa such as Caulimovirus and other unclassified taxa. Differences were observed in the detected EPRVs between the two methods, with the homologous sequence search having a greater number of EPRVs. On the contrary, genome alignment identified various types and sources of virus-like sequences. Furthermore, through genome alignment, a 267-bp sequence with 95% similarity to the gene encoding the aphid-transmitted protein of Strawberry vein banding virus (Caulimovirus venafragariae) was discovered in the F. chiloensis genome, which was likely a recent insertion. In addition, the statistical analysis of the genome alignment results indicated a remarkably higher abundance of virus-like sequences in the genomes of polyploid strawberries compared with diploid ones. Moreover, the differences in virus-like sequences were observed between the genomes of Fragaria species and those of their close relatives. This study enriched the diversity of viruses that infect strawberries, and laid a theoretical foundation for further research on the origin of endogenous viruses in the strawberry genome, host-virus interactions, adaptation, evolution, and their functions.
Collapse
Affiliation(s)
- Zongneng Wang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Jian Liu
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Xingyang Qi
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Daifa Su
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| | - Junyu Yang
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming 650500, China
| | - Xiaolong Cui
- School of Life Sciences, Yunnan University, Kunming 650500, China; (Z.W.); (J.L.); (X.Q.); (D.S.)
| |
Collapse
|
4
|
Prohaska A, Rey-Serra P, Petit J, Petit A, Perrotte J, Rothan C, Denoyes B. Exploration of a European-centered strawberry diversity panel provides markers and candidate genes for the control of fruit quality traits. HORTICULTURE RESEARCH 2024; 11:uhae137. [PMID: 38988619 PMCID: PMC11233882 DOI: 10.1093/hr/uhae137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/05/2024] [Indexed: 07/12/2024]
Abstract
Fruit quality traits are major breeding targets in cultivated strawberry (Fragaria × ananassa). Taking into account the requirements of both growers and consumers when selecting high-quality cultivars is a real challenge. Here, we used a diversity panel enriched with unique European accessions and the 50 K FanaSNP array to highlight the evolution of strawberry diversity over the past 160 years, investigate the molecular basis of 12 major fruit quality traits by genome-wide association studies (GWAS), and provide genetic markers for breeding. Results show that considerable improvements of key breeding targets including fruit weight, firmness, composition, and appearance occurred simultaneously in European and American cultivars. Despite the high genetic diversity of our panel, we observed a drop in nucleotide diversity in certain chromosomal regions, revealing the impact of selection. GWAS identified 71 associations with 11 quality traits and, while validating known associations (firmness, sugar), highlighted the predominance of new quantitative trait locus (QTL), demonstrating the value of using untapped genetic resources. Three of the six selective sweeps detected are related to glossiness or skin resistance, two little-studied traits important for fruit attractiveness and, potentially, postharvest shelf life. Moreover, major QTL for firmness, glossiness, skin resistance, and susceptibility to bruising are found within a low diversity region of chromosome 3D. Stringent search for candidate genes underlying QTL uncovered strong candidates for fruit color, firmness, sugar and acid composition, glossiness, and skin resistance. Overall, our study provides a potential avenue for extending shelf life without compromising flavor and color as well as the genetic markers needed to achieve this goal.
Collapse
Affiliation(s)
- Alexandre Prohaska
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Pol Rey-Serra
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Johann Petit
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| | - Aurélie Petit
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | - Justine Perrotte
- Invenio, MIN de Brienne, 110 Quai de Paludate, 33000 Bordeaux, France
| | | | - Béatrice Denoyes
- Univ. Bordeaux, INRAE, UMR BFP, F-33140 Villenave d'Ornon, France
| |
Collapse
|
5
|
Fan Z, Whitaker VM. Genomic signatures of strawberry domestication and diversification. THE PLANT CELL 2024; 36:1622-1636. [PMID: 38113879 PMCID: PMC11062436 DOI: 10.1093/plcell/koad314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa) has a brief history of less than 300 yr, beginning with the hybridization of octoploids Fragaria chiloensis and Fragaria virginiana. Here we explored the genomic signatures of early domestication and subsequent diversification for different climates using whole-genome sequences of 289 wild, heirloom, and modern varieties from two major breeding programs in the United States. Four nonadmixed wild octoploid populations were identified, with recurrent introgression among the sympatric populations. The proportion of F. virginiana ancestry increased by 20% in modern varieties over initial hybrids, and the proportion of F. chiloensis subsp. pacifica rose from 0% to 3.4%. Effective population size rapidly declined during early breeding. Meanwhile, divergent selection for distinct environments reshaped wild allelic origins in 21 out of 28 chromosomes. Overlapping divergent selective sweeps in natural and domesticated populations revealed 16 convergent genomic signatures that may be important for climatic adaptation. Despite 20 breeding cycles since initial hybridization, more than half of loci underlying yield and fruit size are still not under artificial selection. These insights add clarity to the domestication and breeding history of what is now the most widely cultivated fruit in the world.
Collapse
Affiliation(s)
- Zhen Fan
- Horticultural Sciences Department, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL 33597, USA
| | - Vance M Whitaker
- Horticultural Sciences Department, University of Florida, IFAS Gulf Coast Research and Education Center, Wimauma, FL 33597, USA
| |
Collapse
|
6
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
7
|
Song Y, Peng Y, Liu L, Li G, Zhao X, Wang X, Cao S, Muyle A, Zhou Y, Zhou H. Phased gap-free genome assembly of octoploid cultivated strawberry illustrates the genetic and epigenetic divergence among subgenomes. HORTICULTURE RESEARCH 2024; 11:uhad252. [PMID: 38269295 PMCID: PMC10807706 DOI: 10.1093/hr/uhad252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 11/18/2023] [Indexed: 01/26/2024]
Abstract
The genetic and epigenetic mechanisms underlying the coexistence and coordination of the four diverged subgenomes (ABCD) in octoploid strawberries (Fragaria × ananassa) remains poorly understood. In this study, we have assembled a haplotype-phased gap-free octoploid genome for the strawberry, which allowed us to uncover the sequence, structure, and epigenetic divergences among the subgenomes. The diploid progenitors of the octoploid strawberry, apart from subgenome A (Fragaria vesca), have been a subject of public controversy. Phylogenomic analyses revealed a close relationship between diploid species Fragaria iinumae and subgenomes B, C, and D. Subgenome A, closely related to F. vesca, retains the highest number of genes, exhibits the lowest content of transposable elements (TEs), experiences the strongest purifying selection, shows the lowest DNA methylation levels, and displays the highest expression level compared to the other three subgenomes. Transcriptome and DNA methylome analyses revealed that subgenome A-biased genes were enriched in fruit development biological processes. In contrast, although subgenomes B, C, and D contain equivalent amounts of repetitive sequences, they exhibit diverged methylation levels, particularly for TEs located near genes. Taken together, our findings provide valuable insights into the evolutionary patterns of subgenome structure, divergence and epigenetic dynamics in octoploid strawberries, which could be utilized in strawberry genetics and breeding research.
Collapse
Affiliation(s)
- Yanhong Song
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Yanling Peng
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Lifeng Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Gang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xia Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| | - Xu Wang
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Shuo Cao
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Aline Muyle
- CEFE, University of Montpellier, CNRS, EPHE, IRD, Montpellier 34000, France
| | - Yongfeng Zhou
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- National Key Laboratory of Tropical Crop Breeding, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 570000, China
| | - Houcheng Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, 450009, China
| |
Collapse
|
8
|
Hardigan MA, Feldmann MJ, Carling J, Zhu A, Kilian A, Famula RA, Cole GS, Knapp SJ. A medium-density genotyping platform for cultivated strawberry using DArTag technology. THE PLANT GENOME 2023; 16:e20399. [PMID: 37940627 DOI: 10.1002/tpg2.20399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/22/2023] [Indexed: 11/10/2023]
Abstract
Genomic prediction in breeding populations containing hundreds to thousands of parents and seedlings is prohibitively expensive with current high-density genetic marker platforms designed for strawberry. We developed mid-density panels of molecular inversion probes (MIPs) to be deployed with the "DArTag" marker platform to provide a low-cost, high-throughput genotyping solution for strawberry genomic prediction. In total, 7742 target single nucleotide polymorphism (SNP) regions were used to generate MIP assays that were tested with a screening panel of 376 octoploid Fragaria accessions. We evaluated the performance of DArTag assays based on genotype segregation, amplicon coverage, and their ability to produce subgenome-specific amplicon alignments to the FaRR1 assembly and subsequent alignment-based variant calls with strong concordance to DArT's alignment-free, count-based genotype reports. We used a combination of marker performance metrics and physical distribution in the FaRR1 assembly to select 3K and 5K production panels for genotyping of large strawberry populations. We show that the 3K and 5K DArTag panels are able to target and amplify homologous alleles within subgenomic sequences with low-amplification bias between reference and alternate alleles, supporting accurate genotype calling while producing marker genotypes that can be treated as functionally diploid for quantitative genetic analysis. The 3K and 5K target SNPs show high levels of polymorphism in diverse F. × ananassa germplasm and UC Davis cultivars, with mean pairwise diversity (π) estimates of 0.40 and 0.32 and mean heterozygous genotype frequencies of 0.35 and 0.33, respectively.
Collapse
Affiliation(s)
- Michael A Hardigan
- USDA-ARS, Horticultural Crops Production and Genetic Improvement Research Unit, Corvallis, Oregon, USA
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Mitchell J Feldmann
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Jason Carling
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Anyu Zhu
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Andrzej Kilian
- Diversity Arrays Technology, University of Canberra, Bruce, Australian Capital Territory, Australia
| | - Randi A Famula
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Glenn S Cole
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| | - Steven J Knapp
- Department of Plant Sciences, University of California Davis, Davis, California, USA
| |
Collapse
|
9
|
Denoyes B, Prohaska A, Petit J, Rothan C. Deciphering the genetic architecture of fruit color in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6306-6320. [PMID: 37386925 PMCID: PMC10627153 DOI: 10.1093/jxb/erad245] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.
Collapse
Affiliation(s)
- Béatrice Denoyes
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Alexandre Prohaska
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- INVENIO, MIN de Brienne, Bordeaux, France
| | - Johann Petit
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Christophe Rothan
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
10
|
Mao J, Wang Y, Wang B, Li J, Zhang C, Zhang W, Li X, Li J, Zhang J, Li H, Zhang Z. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad002. [PMID: 37077373 PMCID: PMC10108017 DOI: 10.1093/hr/uhad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa), a perennial herb belonging to the family Rosaceae, is a complex octoploid with high heterozygosity at most loci. However, there is no research on the haplotype of the octoploid strawberry genome. Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar, "Yanli", using single molecule real-time sequencing and high-throughput chromosome conformation capture technology. The "Yanli" genome was 823 Mb in size, with a long terminal repeat assembly index of 14.99. The genome was phased into two haplotypes, Hap1 (825 Mb with contig N50 of 26.70 Mb) and Hap2 (808 Mb with contig N50 of 27.51 Mb). Using the combination of Hap1 and Hap2, we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry. We identified a ~ 10 Mb inversion and translocation on chromosome 2-1. 104 957 and 102 356 protein-coding genes were annotated in Hap1 and Hap2, respectively. Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F. × ananassa genome. In summary, we obtained a high-quality haplotype-resolved genome assembly of F. × ananassa, which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.
Collapse
Affiliation(s)
| | | | - Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jiqi Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Chao Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Wenshuo Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jie Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | | |
Collapse
|
11
|
Fan Z, Tieman DM, Knapp SJ, Zerbe P, Famula R, Barbey CR, Folta KM, Amadeu RR, Lee M, Oh Y, Lee S, Whitaker VM. A multi-omics framework reveals strawberry flavor genes and their regulatory elements. THE NEW PHYTOLOGIST 2022; 236:1089-1107. [PMID: 35916073 PMCID: PMC9805237 DOI: 10.1111/nph.18416] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
Flavor is essential to consumer preference of foods and is an increasing focus of plant breeding programs. In fruit crops, identifying genes underlying volatile organic compounds has great promise to accelerate flavor improvement, but polyploidy and heterozygosity in many species have slowed progress. Here we use octoploid cultivated strawberry to demonstrate how genomic heterozygosity, transcriptomic intricacy and fruit metabolomic diversity can be treated as strengths and leveraged to uncover fruit flavor genes and their regulatory elements. Multi-omics datasets were generated including an expression quantitative trait loci map with 196 diverse breeding lines, haplotype-phased genomes of a highly-flavored breeding selection, a genome-wide structural variant map using five haplotypes, and volatile genome-wide association study (GWAS) with > 300 individuals. Overlaying regulatory elements, structural variants and GWAS-linked allele-specific expression of numerous genes to variation in volatile compounds important to flavor. In one example, the functional role of anthranilate synthase alpha subunit 1 in methyl anthranilate biosynthesis was supported via fruit transient gene expression assays. These results demonstrate a framework for flavor gene discovery in fruit crops and a pathway to molecular breeding of cultivars with complex and desirable flavor.
Collapse
Affiliation(s)
- Zhen Fan
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| | - Denise M. Tieman
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611USA
| | - Steven J. Knapp
- Department of Plant SciencesUniversity of CaliforniaDavisDavisCA95616USA
| | - Philipp Zerbe
- Department of Plant BiologyUniversity of California DavisDavisCA95616USA
| | - Randi Famula
- Department of Plant SciencesUniversity of CaliforniaDavisDavisCA95616USA
| | - Christopher R. Barbey
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| | - Kevin M. Folta
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611USA
| | - Rodrigo R. Amadeu
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFL32611USA
| | - Manbo Lee
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| | - Youngjae Oh
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| | - Seonghee Lee
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| | - Vance M. Whitaker
- Horticultural Sciences DepartmentUniversity of Florida, IFAS Gulf Coast Research and Education CenterWimaumaFL33597USA
| |
Collapse
|
12
|
Grimplet J. Genomic and Bioinformatic Resources for Perennial Fruit Species. Curr Genomics 2022; 23:217-233. [PMID: 36777875 PMCID: PMC9875543 DOI: 10.2174/1389202923666220428102632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 03/12/2022] [Accepted: 03/12/2022] [Indexed: 11/22/2022] Open
Abstract
In the post-genomic era, data management and development of bioinformatic tools are critical for the adequate exploitation of genomics data. In this review, we address the actual situation for the subset of crops represented by the perennial fruit species. The agronomical singularity of these species compared to plant and crop model species provides significant challenges on the implementation of good practices generally not addressed in other species. Studies are usually performed over several years in non-controlled environments, usage of rootstock is common, and breeders heavily rely on vegetative propagation. A reference genome is now available for all the major species as well as many members of the economically important genera for breeding purposes. Development of pangenome for these species is beginning to gain momentum which will require a substantial effort in term of bioinformatic tool development. The available tools for genome annotation and functional analysis will also be presented.
Collapse
Affiliation(s)
- Jérôme Grimplet
- Centro de Investigación y Tecnología Agroalimentaria de Aragón (CITA), Unidad de Hortofruticultura, Gobierno de Aragón, Avda. Montañana, Zaragoza, Spain
- Instituto Agroalimentario de Aragón–IA2 (CITA-Universidad de Zaragoza), Calle Miguel Servet, Zaragoza, Spain
| |
Collapse
|
13
|
Feng X, Yang N, Wang Q, Yuan H, Li X, Majid M, Zhang X, Cao C, Huang Y. A Chromosome-Level Genome Assembly of the Pygmy Mole Cricket Xya riparia. Genome Biol Evol 2022; 14:evac001. [PMID: 34999819 PMCID: PMC8765791 DOI: 10.1093/gbe/evac001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2022] [Indexed: 11/13/2022] Open
Abstract
The pygmy mole cricket Xya riparia (Orthoptera: Tridactyloidea) is rarely studied or widely known. Some species of pygmy mole crickets, however, not only have a potential ecological value but are also important in the study of the evolution of the orthopteran genome and its phylogenetic relationships. The genome resources of pygmy crickets are limited and there are currently no publications referencing this species' genome. In this study, we assembled a reference genome of X. riparia at the chromosomal level using nanopore sequencing and Hi-C technology. An X. riparia genome of 1.67 Gb was successfully assembled from 164.01 Gb of nanopore sequencing data. The genome assembly showed a completeness of 98.97% benchmarking universal single-copy orthologs with a contig N50 of 4.18 Mb and the longest contig being 18.84 Mb. The contigs were clustered, ordered, and correctly oriented on six pseuchromosomes, which covered 95.63% of the genome assembly through Hi-C data with a scaffold N50 of 319.1 Mb and the longest scaffold being 397.8 Mb. Repeat sequences accounted for 42.88% of the whole-genome assembly. A total of 60,847 noncoding RNAs were detected. Moreover, 16,468 (87.91%) of the genes were functionally annotated. As this is the first high-quality reference genome of X. riparia at the chromosomal level, it will undoubtedly serve as a valuable resource for ecological, biological, and genetic research on pygmy mole crickets as well as for general research on Orthoptera's genome evolution and phylogenetic relationships.
Collapse
Affiliation(s)
- Xiaolei Feng
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Nan Yang
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Qilu Wang
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Hao Yuan
- School of Basic Medical Sciences, Xi’an Medical University, Shaanxi, China
| | - Xuejuan Li
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Muhammad Majid
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Xue Zhang
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| | - Chengquan Cao
- College of Life Sciences, Leshan Normal University, Sichuan, China
| | - Yuan Huang
- School of Life Sciences, Shaanxi Normal University, Xi’an, Shaanxi, China
| |
Collapse
|
14
|
Manivannan A, Han K, Lee SY, Lee HE, Hong JP, Kim J, Lee YR, Lee ES, Kim DS. Genome-Wide Analysis of MYB10 Transcription Factor in Fragaria and Identification of QTLs Associated with Fruit Color in Octoploid Strawberry. Int J Mol Sci 2021; 22:ijms222212587. [PMID: 34830464 PMCID: PMC8620777 DOI: 10.3390/ijms222212587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.
Collapse
|