1
|
Huang P, Tate M, Berg‐Falloure KM, Christensen SA, Zhang J, Schirawski J, Meeley R, Kolomiets MV. A non-JA producing oxophytodienoate reductase functions in salicylic acid-mediated antagonism with jasmonic acid during pathogen attack. MOLECULAR PLANT PATHOLOGY 2023; 24:725-741. [PMID: 36715587 PMCID: PMC10257049 DOI: 10.1111/mpp.13299] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 01/09/2023] [Accepted: 01/10/2023] [Indexed: 06/11/2023]
Abstract
Peroxisome-localized oxo-phytodienoic acid (OPDA) reductases (OPR) are enzymes converting 12-OPDA into jasmonic acid (JA). However, the biochemical and physiological functions of the cytoplasmic non-JA producing OPRs remain largely unknown. Here, we generated Mutator-insertional mutants of the maize OPR2 gene and tested its role in resistance to pathogens with distinct lifestyles. Functional analyses showed that the opr2 mutants were more susceptible to the (hemi)biotrophic pathogens Colletotrichum graminicola and Ustilago maydis, but were more resistant to the necrotrophic fungus Cochliobolus heterostrophus. Hormone profiling revealed that increased susceptibility to C. graminicola was associated with decreased salicylic acid (SA) but increased JA levels. Mutation of the JA-producing lipoxygenase 10 (LOX10) reversed this phenotype in the opr2 mutant background, corroborating the notion that JA promotes susceptibility to this pathogen. Exogenous SA did not rescue normal resistance levels in opr2 mutants, suggesting that this SA-inducible gene is the key downstream component of the SA-mediated defences against C. graminicola. Disease assays of the single and double opr2 and lox10 mutants and the JA-deficient opr7opr8 mutants showed that OPR2 negatively regulates JA biosynthesis, and that JA is required for resistance against C. heterostrophus. Overall, this study uncovers a novel function of a non-JA producing OPR as a major negative regulator of JA biosynthesis during pathogen infection, a function that leads to its contrasting contribution to either resistance or susceptibility depending on pathogen lifestyle.
Collapse
Affiliation(s)
- Pei‐Cheng Huang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | - Morgan Tate
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| | | | - Shawn A. Christensen
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Nutrition, Dietetics, and Food ScienceBrigham Young UniversityProvoUtahUSA
| | - Jinglan Zhang
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
- Present address:
Obstetrics and Gynecology HospitalInstitute of Reproduction and Development, Fudan UniversityShanghaiChina
| | - Jan Schirawski
- Matthias‐Schleiden Institute/Genetics, Faculty of Biological SciencesFriedrich‐Schiller UniversityJenaGermany
| | | | - Michael V. Kolomiets
- Department of Plant Pathology and MicrobiologyTexas A&M UniversityCollege StationTexasUSA
| |
Collapse
|
2
|
Berg-Falloure KM, Kolomiets MV. Ketols Emerge as Potent Oxylipin Signals Regulating Diverse Physiological Processes in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112088. [PMID: 37299067 DOI: 10.3390/plants12112088] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023]
Abstract
Plants produce an array of oxylipins implicated in defense responses against various stresses, with about 600 oxylipins identified in plants to date. Most known oxylipins are the products of lipoxygenase (LOX)-mediated oxygenation of polyunsaturated fatty acids. One of the most well-characterized oxylipins produced by plants is the hormone jasmonic acid (JA); however, the function of the vast majority of oxylipins remains a mystery. One of the lesser-studied groups of oxylipins is comprised of ketols produced by the sequential action of LOX, allene oxide synthase (AOS), followed by non-enzymatic hydrolysis. For decades, ketols were mostly considered mere by-products of JA biosynthesis. Recent accumulating evidence suggests that ketols exhibit hormone-like signaling activities in the regulation of diverse physiological processes, including flowering, germination, plant-symbiont interactions, and defense against biotic and abiotic stresses. To complement multiple reviews on jasmonate and overall oxylipin biology, this review focuses specifically on advancing our understanding of ketol biosynthesis, occurrence, and proposed functions in diverse physiological processes.
Collapse
Affiliation(s)
- Katherine M Berg-Falloure
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
3
|
Mourad AM, Hamdy RM, Esmail SM. Novel genomic regions on chromosome 5B controlling wheat powdery mildew seedling resistance under Egyptian conditions. FRONTIERS IN PLANT SCIENCE 2023; 14:1160657. [PMID: 37235018 PMCID: PMC10208068 DOI: 10.3389/fpls.2023.1160657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/28/2023]
Abstract
Wheat powdery mildew (PM) causes significant yield losses worldwide. None of the Egyptian wheat cultivars was detected to be highly resistant to such a severe disease. Therefore, a diverse spring wheat panel was evaluated for PM seedling resistance using different Bgt conidiospores collected from Egyptian fields in two growing seasons. The evaluation was done in two separate experiments. Highly significant differences were found between the two experiments suggesting the presence of different isolates populations. Highly significant differences were found among the tested genotypes confirming the ability to improve PM resistance using the recent panel. Genome-wide association study (GWAS) was done for each experiment separately and a total of 71 significant markers located within 36 gene models were identified. The majority of these markers are located on chromosome 5B. Haplotype block analysis identified seven blocks containing the significant markers on chromosome 5B. Five gene models were identified on the short arm of the chromosome. Gene enrichment analysis identified five and seven pathways based on the biological process and molecular functions respectively for the detected gene models. All these pathways are associated with disease resistance in wheat. The genomic regions on 5B seem to be novel regions that are associated with PM resistance under Egyptian conditions. Selection of superior genotypes was done and Grecian genotypes seem to be a good source for improving PM resistance under Egyptian conditions.
Collapse
Affiliation(s)
- Amira M.I. Mourad
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
- Department of Agronomy, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Rania M. Hamdy
- Food Science and Technology Department, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Samar M. Esmail
- Wheat Disease Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza, Egypt
| |
Collapse
|
4
|
Kumar A, Kanak KR, Arunachalam A, Dass RS, Lakshmi PTV. Comparative transcriptome profiling and weighted gene co-expression network analysis to identify core genes in maize ( Zea mays L.) silks infected by multiple fungi. FRONTIERS IN PLANT SCIENCE 2022; 13:985396. [PMID: 36388593 PMCID: PMC9647128 DOI: 10.3389/fpls.2022.985396] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Maize (Zea mays L.) is the third most popular Poaceae crop after wheat and rice and used in feed and pharmaceutical sectors. The maize silk contains bioactive components explored by traditional Chinese herbal medicine for various pharmacological activities. However, Fusarium graminearum, Fusarium verticillioides, Trichoderma atroviride, and Ustilago maydis can infect the maize, produce mycotoxins, hamper the quantity and quality of silk production, and further harm the primary consumer's health. However, the defense mechanism is not fully understood in multiple fungal infections in the silk of Z. mays. In this study, we applied bioinformatics approaches to use the publicly available transcriptome data of Z. mays silk affected by multiple fungal flora to identify core genes involved in combatting disease response. Differentially expressed genes (DEGs) were identified among intra- and inter-transcriptome data sets of control versus infected Z. mays silks. Upon further comparison between up- and downregulated genes within the control of datasets, 4,519 upregulated and 5,125 downregulated genes were found. The DEGs have been compared with genes in the modules of weighted gene co-expression network analysis to relevant specific traits towards identifying core genes. The expression pattern of transcription factors, carbohydrate-active enzymes (CAZyme), and resistance genes was analyzed. The present investigation is supportive of our findings that the gene ontology, immunity stimulus, and resistance genes are upregulated, but physical and metabolic processes such as cell wall organizations and pectin synthesis were downregulated respectively. Our results are indicative that terpene synthase TPS6 and TPS11 are involved in the defense mechanism against fungal infections in maize silk.
Collapse
Affiliation(s)
- Amrendra Kumar
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| | - Kanak Raj Kanak
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Annamalai Arunachalam
- Postgraduate and Research Department of Botany, Arignar Anna Government Arts College, Villupuram, Tamil Nadu, India
| | - Regina Sharmila Dass
- Fungal Genetics and Mycotoxicology Laboratory, Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - P. T. V. Lakshmi
- Phytomatics Lab, Department of Bioinformatics, School of Life Sciences, Pondicherry University, Pondicherry, India
| |
Collapse
|
5
|
Guche MD, Pilati S, Trenti F, Dalla Costa L, Giorni P, Guella G, Marocco A, Lanubile A. Functional Study of Lipoxygenase-Mediated Resistance against Fusarium verticillioides and Aspergillus flavus Infection in Maize. Int J Mol Sci 2022; 23:ijms231810894. [PMID: 36142806 PMCID: PMC9503958 DOI: 10.3390/ijms231810894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/05/2022] [Accepted: 09/15/2022] [Indexed: 11/28/2022] Open
Abstract
Mycotoxin contamination of maize kernels by fungal pathogens like Fusarium verticillioides and Aspergillus flavus is a chronic global challenge impacting food and feed security, health, and trade. Maize lipoxygenase genes (ZmLOXs) synthetize oxylipins that play defense roles and govern host-fungal interactions. The current study investigated the involvement of ZmLOXs in maize resistance against these two fungi. A considerable intraspecific genetic and transcript variability of the ZmLOX family was highlighted by in silico analysis comparing publicly available maize pan-genomes and pan-transcriptomes, respectively. Then, phenotyping and expression analysis of ZmLOX genes along with key genes involved in oxylipin biosynthesis were carried out in a maize mutant carrying a Mu transposon insertion in the ZmLOX4 gene (named UFMulox4) together with Tzi18, Mo17, and W22 inbred lines at 3- and 7-days post-inoculation with F. verticillioides and A. flavus. Tzi18 showed the highest resistance to the pathogens coupled with the lowest mycotoxin accumulation, while UFMulox4 was highly susceptible to both pathogens with the most elevated mycotoxin content. F. verticillioides inoculation determined a stronger induction of ZmLOXs and maize allene oxide synthase genes as compared to A. flavus. Additionally, oxylipin analysis revealed prevalent linoleic (18:2) peroxidation by 9-LOXs, the accumulation of 10-oxo-11-phytoenoic acid (10-OPEA), and triglyceride peroxidation only in F. verticillioides inoculated kernels of resistant genotypes.
Collapse
Affiliation(s)
- Mikias Damtew Guche
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- C3A—Centro Agricoltura Alimenti Ambiente, Via Edmund Mach 1, 38098 San Michele all’Adige, Italy
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Stefania Pilati
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Francesco Trenti
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Lorenza Dalla Costa
- Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Paola Giorni
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Graziano Guella
- Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo, Italy
| | - Adriano Marocco
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Alessandra Lanubile
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
- Correspondence: ; Tel.: +39-0523-599206
| |
Collapse
|
6
|
Tang B, Zhang Z, Zhao X, Xu Y, Wang L, Chen XL, Wang W. Multi-Omics Analysis Reveals a Regulatory Network of ZmCCT During Maize Resistance to Gibberella Stalk Rot at the Early Stage. FRONTIERS IN PLANT SCIENCE 2022; 13:917493. [PMID: 35812937 PMCID: PMC9260664 DOI: 10.3389/fpls.2022.917493] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Gibberella stalk rot (GSR) caused by Fusarium graminearum is one of the most devastating diseases in maize; however, the regulatory mechanism of resistance to GSR remains largely unknown. We performed a comparative multi-omics analysis to reveal the early-stage resistance of maize to GSR. We inoculated F. graminearum to the roots of susceptible (Y331) and resistant (Y331-ΔTE) near-isogenic lines containing GSR-resistant gene ZmCCT for multi-omics analysis. Transcriptome detected a rapid reaction that confers resistance at 1-3 hpi as pattern-triggered immunity (PTI) response to GSR. Many key properties were involved in GSR resistance, including genes in photoperiod and hormone pathways of salicylic acid and auxin. The activation of programmed cell death-related genes and a number of metabolic pathways at 6 hpi might be important to prevent further colonization. This is consistent with an integrative analysis of transcriptomics and proteomics that resistant-mediated gene expression reprogramming exhibited a dynamic pattern from 3 to 6 hpi. Further metabolomics analysis revealed that the amount of many chemical compounds was altered in pathways associated with the phenylpropanoid biosynthesis and the phenylalanine metabolism, which may play key roles to confer the GSR resistance. Taken together, we generated a valuable resource to interpret the defense mechanism during early GSR resistance.
Collapse
Affiliation(s)
- Bozeng Tang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Zhaoheng Zhang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xinyu Zhao
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Yang Xu
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Li Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Weixiang Wang
- Beijing Key Laboratory of New Technology in Agricultural Application, National Demonstration Center for Experimental Plant Production Education, College of Plant Science and Technology, Beijing University of Agriculture, Beijing, China
| |
Collapse
|
7
|
Wan S, Xin XF. Regulation and integration of plant jasmonate signaling: a comparative view of monocot and dicot. J Genet Genomics 2022; 49:704-714. [PMID: 35452856 DOI: 10.1016/j.jgg.2022.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/01/2022] [Accepted: 04/02/2022] [Indexed: 10/18/2022]
Abstract
The phytohormone jasmonate plays a pivotal role in various aspects of plant life, including developmental programs and defense against pests and pathogens. A large body of knowledge on jasmonate biosynthesis, signal transduction as well as its functions in diverse plant processes has been gained in the past two decades. In addition, there exists extensive crosstalk between jasmonate pathway and other phytohormone pathways, such as salicylic acid (SA) and gibberellin (GA), in co-regulation of plant immune status, fine-tuning the balance of plant growth and defense, and so on, which were mostly learned from studies in the dicotyledonous model plants Arabidopsis thaliana and tomato but much less in monocot. Interestingly, existing evidence suggests both conservation and functional divergence in terms of core components of jasmonate pathway, its biological functions and signal integration with other phytohormones, between monocot and dicot. In this review, we summarize the current understanding on JA signal initiation, perception and regulation, and highlight the distinctive characteristics in different lineages of plants.
Collapse
Affiliation(s)
- Shiwei Wan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100049, China; CAS-JIC Center of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
8
|
Wasternack C. Deciphering the oxylipin signatures of necrotrophic infection in plants. A commentary on: Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections. ANNALS OF BOTANY 2022; 129:i-iii. [PMID: 34882765 PMCID: PMC8835628 DOI: 10.1093/aob/mcab142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
This article comments on: Vladimir Y. Gorshkov, Yana Y. Toporkova, Ivan D. Tsers, Elena O. Smirnova, Anna V. Ogorodnikova, Natalia E. Gogoleva, Olga I. Parfirova, Olga E. Petrova, and Yuri V. Gogolev, Differential modulation of the lipoxygenase cascade during typical and latent Pectobacterium atrosepticum infections, Annals of Botany, Volume 129, Issue 3, 16 Februray 2022, Pages 271–285 https://doi.org/10.1093/aob/mcab108
Collapse
Affiliation(s)
- Claus Wasternack
- Department of Molecular Signal Processing, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120 Halle (Saale), Germany
- Laboratory of Growth Regulators, Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany AS CR & Palacký University, Šlechtitelů 11, CZ-78371 Olomouc, Czech Republic
| |
Collapse
|