1
|
Islam T, Danishuddin, Tamanna NT, Matin MN, Barai HR, Haque MA. Resistance Mechanisms of Plant Pathogenic Fungi to Fungicide, Environmental Impacts of Fungicides, and Sustainable Solutions. PLANTS (BASEL, SWITZERLAND) 2024; 13:2737. [PMID: 39409607 PMCID: PMC11478979 DOI: 10.3390/plants13192737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024]
Abstract
The significant reduction in agricultural output and the decline in product quality are two of the most glaring negative impacts caused by plant pathogenic fungi (PPF). Furthermore, contaminated food or transit might introduce mycotoxins produced by PPF directly into the food chain. Eating food tainted with mycotoxin is extremely dangerous for both human and animal health. Using fungicides is the first choice to control PPF or their toxins in food. Fungicide resistance and its effects on the environment and public health are becoming more and more of a concern, despite the fact that chemical fungicides are used to limit PPF toxicity and control growth in crops. Fungicides induce target site alteration and efflux pump activation, and mutations in PPF result in resistance. As a result, global trends are shifting away from chemically manufactured pesticides and toward managing fungal plant diseases using various biocontrol techniques, tactics, and approaches. However, surveillance programs to monitor fungicide resistance and their environmental impact are much fewer compared to bacterial antibiotic resistance surveillance programs. In this review, we discuss the PPF that contributes to disease development in plants, the fungicides used against them, factors causing the spread of PPF and the emergence of new strains, the antifungal resistance mechanisms of PPF, health, the environmental impacts of fungicides, and the use of biocontrol agents (BCAs), antimicrobial peptides (AMPs), and nanotechnologies to control PPF as a safe and eco-friendly alternative to fungicides.
Collapse
Affiliation(s)
- Tarequl Islam
- Department of Microbiology, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Danishuddin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| | - Noshin Tabassum Tamanna
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali 3814, Bangladesh;
| | - Muhammad Nurul Matin
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
- Professor Joarder DNA and Chromosome Research Laboratory, Department of Genetic Engineering and Biotechnology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Hasi Rani Barai
- School of Mechanical and IT Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Md Azizul Haque
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea; (D.); (M.N.M.)
| |
Collapse
|
2
|
Shawky A, Hatawsh A, Al-Saadi N, Farzan R, Eltawy N, Francis M, Abousamra S, Ismail YY, Attia K, Fakhouri AS, Abdelrahman M. Revolutionizing Tomato Cultivation: CRISPR/Cas9 Mediated Biotic Stress Resistance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2269. [PMID: 39204705 PMCID: PMC11360581 DOI: 10.3390/plants13162269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Tomato (Solanum lycopersicon L.) is one of the most widely consumed and produced vegetable crops worldwide. It offers numerous health benefits due to its rich content of many therapeutic elements such as vitamins, carotenoids, and phenolic compounds. Biotic stressors such as bacteria, viruses, fungi, nematodes, and insects cause severe yield losses as well as decreasing fruit quality. Conventional breeding strategies have succeeded in developing resistant genotypes, but these approaches require significant time and effort. The advent of state-of-the-art genome editing technologies, particularly CRISPR/Cas9, provides a rapid and straightforward method for developing high-quality biotic stress-resistant tomato lines. The advantage of genome editing over other approaches is the ability to make precise, minute adjustments without leaving foreign DNA inside the transformed plant. The tomato genome has been precisely modified via CRISPR/Cas9 to induce resistance genes or knock out susceptibility genes, resulting in lines resistant to common bacterial, fungal, and viral diseases. This review provides the recent advances and application of CRISPR/Cas9 in developing tomato lines with resistance to biotic stress.
Collapse
Affiliation(s)
- Abdelrahman Shawky
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Abdulrahman Hatawsh
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Nabil Al-Saadi
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Raed Farzan
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Nour Eltawy
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Mariz Francis
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Sara Abousamra
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Yomna Y. Ismail
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
| | - Abdulaziz S. Fakhouri
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia; (K.A.); (A.S.F.)
- Department of Biomedical Technology, College of Applied Medical Sciences, King Saud University, Riyadh 12372, Saudi Arabia
| | - Mohamed Abdelrahman
- Biotechnology School, Nile University, 26th of July Corridor, Sheikh Zayed City 12588, Giza, Egypt; (A.S.); (A.H.); (N.A.-S.); (N.E.); (M.F.); (S.A.); (Y.Y.I.)
| |
Collapse
|
3
|
Spada M, Pugliesi C, Fambrini M, Pecchia S. Challenges and Opportunities Arising from Host- Botrytis cinerea Interactions to Outline Novel and Sustainable Control Strategies: The Key Role of RNA Interference. Int J Mol Sci 2024; 25:6798. [PMID: 38928507 PMCID: PMC11203536 DOI: 10.3390/ijms25126798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/18/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024] Open
Abstract
The necrotrophic plant pathogenic fungus Botrytis cinerea (Pers., 1794), the causative agent of gray mold disease, causes significant losses in agricultural production. Control of this fungal pathogen is quite difficult due to its wide host range and environmental persistence. Currently, the management of the disease is still mainly based on chemicals, which can have harmful effects not only on the environment and on human health but also because they favor the development of strains resistant to fungicides. The flexibility and plasticity of B. cinerea in challenging plant defense mechanisms and its ability to evolve strategies to escape chemicals require the development of new control strategies for successful disease management. In this review, some aspects of the host-pathogen interactions from which novel and sustainable control strategies could be developed (e.g., signaling pathways, molecules involved in plant immune mechanisms, hormones, post-transcriptional gene silencing) were analyzed. New biotechnological tools based on the use of RNA interference (RNAi) are emerging in the crop protection scenario as versatile, sustainable, effective, and environmentally friendly alternatives to the use of chemicals. RNAi-based fungicides are expected to be approved soon, although they will face several challenges before reaching the market.
Collapse
Affiliation(s)
- Maria Spada
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Claudio Pugliesi
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Marco Fambrini
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| | - Susanna Pecchia
- Department of Agriculture Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
- Interdepartmental Research Center Nutrafood “Nutraceuticals and Food for Health”, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy
| |
Collapse
|
4
|
Pavese V, Moglia A, Milani AM, Marino LA, Martinez MT, Torello Marinoni D, Botta R, Corredoira E. Advances in Quercus ilex L. breeding: the CRISPR/Cas9 technology via ribonucleoproteins. FRONTIERS IN PLANT SCIENCE 2024; 15:1323390. [PMID: 38439988 PMCID: PMC10910054 DOI: 10.3389/fpls.2024.1323390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/31/2024] [Indexed: 03/06/2024]
Abstract
The CRISPR/Cas9 ribonucleoprotein (RNP)-mediated technology represents a fascinating tool for modifying gene expression or mutagenesis as this system allows for obtaining transgene-free plants, avoiding exogenous DNA integration. Holm oak (Quercus ilex) has an important social, economic, and ecological role in the Mediterranean climate zones of Western Europe and North Africa and is severely affected by oak decline syndrome. Here we report the first example of the application of the CRISPR/Cas9-RNP technology in holm oak. Firstly, we evaluated the protoplast isolation from both in vitro leaves and proembryogenic masses. Proembryogenic masses represented the best material to get high protoplast yield (11 x 106 protoplasts/ml) and viability. Secondly, the protoplast transfection ability was evaluated through a vector expressing green fluorescence protein as marker gene of transfection, reaching a transfection percentage of 62% after 24 hours. CRISPR/Cas9 RNPs were successfully delivered into protoplasts resulting in 5.6% ± 0.5% editing efficiency at phytoene desaturase (pds) target genomic region. Protoplasts were then cultured in semisolid media and, after 45 days in culture, developed embryogenic calli were observed in a Murashige and Skoog media with half concentration of NH4NO3 and KNO3 supplemented with 0.1 mg/L benzylaminopurine and 0.1 mg/L 2,4-dichlorophenoxyacetic acid.
Collapse
Affiliation(s)
- Vera Pavese
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Anna Maria Milani
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Lorenzo Antonio Marino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Maria Teresa Martinez
- Mision Biologica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Cientificas, Santiago de Compostela, Spain
| | - Daniela Torello Marinoni
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Roberto Botta
- Dipartimento di Scienze Agrarie, Forestali e Alimentari-Department of Agricultural, Forest and Food Sciences (DISAFA), Università degli Studi di Torino, Torino, Italy
| | - Elena Corredoira
- Mision Biologica de Galicia, Sede de Santiago, Consejo Superior de Investigaciones Cientificas, Santiago de Compostela, Spain
| |
Collapse
|
5
|
Hawkes CV, Allen X, Balint-Kurti P, Cowger C. Manipulating the plant mycobiome to enhance resilience: Ecological and evolutionary opportunities and challenges. PLoS Pathog 2023; 19:e1011816. [PMID: 38096141 PMCID: PMC10721032 DOI: 10.1371/journal.ppat.1011816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023] Open
Affiliation(s)
- Christine V. Hawkes
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Xavious Allen
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Peter Balint-Kurti
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| | - Christina Cowger
- Plant Science Research Unit, USDA-ARS, Raleigh, North Carolina, United States of America
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America
| |
Collapse
|
6
|
Misra V, Mall AK, Pandey H, Srivastava S, Sharma A. Advancements and prospects of CRISPR/Cas9 technologies for abiotic and biotic stresses in sugar beet. Front Genet 2023; 14:1235855. [PMID: 38028586 PMCID: PMC10665535 DOI: 10.3389/fgene.2023.1235855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 10/18/2023] [Indexed: 12/01/2023] Open
Abstract
Sugar beet is a crop with high sucrose content, known for sugar production and recently being considered as an emerging raw material for bioethanol production. This crop is also utilized as cattle feed, mainly when animal green fodder is scarce. Bioethanol and hydrogen gas production from this crop is an essential source of clean energy. Environmental stresses (abiotic/biotic) severely affect the productivity of this crop. Over the past few decades, the molecular mechanisms of biotic and abiotic stress responses in sugar beet have been investigated using next-generation sequencing, gene editing/silencing, and over-expression approaches. This information can be efficiently utilized through CRISPR/Cas 9 technology to mitigate the effects of abiotic and biotic stresses in sugar beet cultivation. This review highlights the potential use of CRISPR/Cas 9 technology for abiotic and biotic stress management in sugar beet. Beet genes known to be involved in response to alkaline, cold, and heavy metal stresses can be precisely modified via CRISPR/Cas 9 technology for enhancing sugar beet's resilience to abiotic stresses with minimal off-target effects. Similarly, CRISPR/Cas 9 technology can help generate insect-resistant sugar beet varieties by targeting susceptibility-related genes, whereas incorporating Cry1Ab and Cry1C genes may provide defense against lepidopteron insects. Overall, CRISPR/Cas 9 technology may help enhance sugar beet's adaptability to challenging environments, ensuring sustainable, high-yield production.
Collapse
Affiliation(s)
- Varucha Misra
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - A. K. Mall
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
| | - Himanshu Pandey
- ICAR-Indian Institute of Sugarcane Research, Lucknow, India
- Khalsa College, Amritsar, India
| | | | - Avinash Sharma
- Faculty of Agricultural Sciences, Arunachal University of Studies, Namsai, India
| |
Collapse
|
7
|
Ijaz M, Khan F, Zaki HEM, Khan MM, Radwan KSA, Jiang Y, Qian J, Ahmed T, Shahid MS, Luo J, Li B. Recent Trends and Advancements in CRISPR-Based Tools for Enhancing Resistance against Plant Pathogens. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091911. [PMID: 37176969 PMCID: PMC10180734 DOI: 10.3390/plants12091911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/29/2023] [Accepted: 05/04/2023] [Indexed: 05/15/2023]
Abstract
Targeted genome editing technologies are becoming the most important and widely used genetic tools in studies of phytopathology. The "clustered regularly interspaced short palindromic repeats (CRISPR)" and its accompanying proteins (Cas) have been first identified as a natural system associated with the adaptive immunity of prokaryotes that have been successfully used in various genome-editing techniques because of its flexibility, simplicity, and high efficiency in recent years. In this review, we have provided a general idea about different CRISPR/Cas systems and their uses in phytopathology. This review focuses on the benefits of knock-down technologies for targeting important genes involved in the susceptibility and gaining resistance against viral, bacterial, and fungal pathogens by targeting the negative regulators of defense pathways of hosts in crop plants via different CRISPR/Cas systems. Moreover, the possible strategies to employ CRISPR/Cas system for improving pathogen resistance in plants and studying plant-pathogen interactions have been discussed.
Collapse
Affiliation(s)
- Munazza Ijaz
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Fahad Khan
- Tasmanian Institute of Agriculture, University of Tasmania, Prospect, TAS 7250, Australia
| | - Haitham E M Zaki
- Horticulture Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
- Applied Biotechnology Department, University of Technology and Applied Sciences-Sur, Sur 411, Oman
| | - Muhammad Munem Khan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad 38000, Pakistan
| | - Khlode S A Radwan
- Plant Pathology Department, Faculty of Agriculture, Minia University, El-Minia 61517, Egypt
| | - Yugen Jiang
- Agricultural Technology Extension Center of Fuyang District, Hangzhou 311400, China
| | - Jiahui Qian
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Temoor Ahmed
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Muhammad Shafiq Shahid
- Department of Plant Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khod 123, Oman
| | - Jinyan Luo
- Department of Plant Quarantine, Shanghai Extension and Service Center of Agriculture Technology, Shanghai 201103, China
| | - Bin Li
- State Key Laboratory of Rice Biology and Breeding, Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
8
|
Eckerstorfer MF, Dolezel M, Engelhard M, Giovannelli V, Grabowski M, Heissenberger A, Lener M, Reichenbecher W, Simon S, Staiano G, Wüst Saucy AG, Zünd J, Lüthi C. Recommendations for the Assessment of Potential Environmental Effects of Genome-Editing Applications in Plants in the EU. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091764. [PMID: 37176822 PMCID: PMC10180588 DOI: 10.3390/plants12091764] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023]
Abstract
The current initiative of the European Commission (EC) concerning plants produced using certain new genomic techniques, in particular, targeted mutagenesis and cisgenesis, underlines that a high level of protection for human and animal health and the environment needs to be maintained when using such applications. The current EU biosafety regulation framework ensures a high level of protection with a mandatory environmental risk assessment (ERA) of genetically modified (GM) products prior to the authorization of individual GMOs for environmental release or marketing. However, the guidance available from the European Food Safety Authority (EFSA) for conducting such an ERA is not specific enough regarding the techniques under discussion and needs to be further developed to support the policy goals towards ERA, i.e., a case-by-case assessment approach proportionate to the respective risks, currently put forward by the EC. This review identifies important elements for the case-by-case approach for the ERA that need to be taken into account in the framework for a risk-oriented regulatory approach. We also discuss that the comparison of genome-edited plants with plants developed using conventional breeding methods should be conducted at the level of a scientific case-by-case assessment of individual applications rather than at a general, technology-based level. Our considerations aim to support the development of further specific guidance for the ERA of genome-edited plants.
Collapse
Affiliation(s)
- Michael F Eckerstorfer
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Marion Dolezel
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Margret Engelhard
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Valeria Giovannelli
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Marcin Grabowski
- Ministry of Climate and Environment, Department Nature Conservation, GMO Unit, Wawelska 52/54, 00-922 Warsaw, Poland
| | - Andreas Heissenberger
- Umweltbundesamt-Environment Agency Austria (EAA), Landuse and Biosafety Unit, Spittelauer Lände 5, 1090 Vienna, Austria
| | - Matteo Lener
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Wolfram Reichenbecher
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Samson Simon
- Federal Agency for Nature Conservation, Division of Assessment of GMOs/Enforcement of Genetic Engineering Act, Konstantinstr. 110, 53179 Bonn, Germany
| | - Giovanni Staiano
- ISPRA (Italian Institute for Environmental Protection and Research), Department for Environmental Monitoring and Protection and for Biodiversity Conservation, Via Vitaliano Brancati, 48, 00144 Rome, Italy
| | - Anne Gabrielle Wüst Saucy
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Jan Zünd
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| | - Christoph Lüthi
- Federal Office for the Environment (FOEN), Biotechnology Section, Soil and Biotechnology Division, 3003 Bern, Switzerland
| |
Collapse
|
9
|
Gupta PK, Vasistha NK, Singh S, Joshi AK. Genetics and breeding for resistance against four leaf spot diseases in wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1023824. [PMID: 37063191 PMCID: PMC10096043 DOI: 10.3389/fpls.2023.1023824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 02/28/2023] [Indexed: 06/19/2023]
Abstract
In wheat, major yield losses are caused by a variety of diseases including rusts, spike diseases, leaf spot and root diseases. The genetics of resistance against all these diseases have been studied in great detail and utilized for breeding resistant cultivars. The resistance against leaf spot diseases caused by each individual necrotroph/hemi-biotroph involves a complex system involving resistance (R) genes, sensitivity (S) genes, small secreted protein (SSP) genes and quantitative resistance loci (QRLs). This review deals with resistance for the following four-leaf spot diseases: (i) Septoria nodorum blotch (SNB) caused by Parastagonospora nodorum; (ii) Tan spot (TS) caused by Pyrenophora tritici-repentis; (iii) Spot blotch (SB) caused by Bipolaris sorokiniana and (iv) Septoria tritici blotch (STB) caused by Zymoseptoria tritici.
Collapse
Affiliation(s)
- Pushpendra Kumar Gupta
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Murdoch’s Centre for Crop and Food Innovation, Murdoch University, Murdoch, WA, Australia
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| | - Neeraj Kumar Vasistha
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
- Department of Genetics-Plant Breeding and Biotechnology, Dr Khem Singh Gill, Akal College of Agriculture, Eternal University, Baru Sahib, Sirmour, India
| | - Sahadev Singh
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
- The International Maize and Wheat Improvement Center (CIMMYT), National Agricultural Science Complex (NASC), Dev Prakash Shastri (DPS) Marg, New Delhi, India
| |
Collapse
|
10
|
Antony Ceasar S, Ignacimuthu S. CRISPR/Cas genome editing in plants: Dawn of Agrobacterium transformation for recalcitrant and transgene-free plants for future crop breeding. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 196:724-730. [PMID: 36812799 DOI: 10.1016/j.plaphy.2023.02.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Genome editing tools based on CRISPR/Cas system have been posed to solve many issues in agriculture and improve food production. Genetic engineering by Agrobacterium-mediated transformation has helped to impart specific traits straightaway in many crops. Many GM crops have also reached the field for commercial cultivation. Genetic engineering requires mostly a transformation protocol often mediated by Agrobacterium to insert a specific gene at a random locus. Genome editing with CRISPR/Cas system is a more precise technique for the targeted modification of genes/bases in the host plant genome. Unlike the conventional transformation system, wherein elimination of marker/foreign gene was possible only post-transformation, CRISPR/Cas system could generate transgene-free plants by delivering CRISPR/Cas reagents such as the Cas protein and guide RNAs gRNA(s) preassembled to form ribonucleoproteins (RNPs) into plant cells. CRISPR reagent delivery might be helpful to overcome issues with plants that are recalcitrant to Agrobacterium transformation and the legal hurdles due to the presence of the foreign gene. More recently, the grafting of wild-type shoots to transgenic donor rootstocks developed by the CRISPR/Cas system has reported transgene-free genome editing. CRISPR/Cas system also requires only a small piece of gRNA besides Cas9 or other effectors to target a specific region in the genome. So this system has been projected to be a key contributor to future crop breeding. In this article, we recap the main events of plant transformation, compare the difference between genetic transformation and CRISPR/Cas-mediated genome editing, and draw insights into the future application of the CRISPR/Cas system.
Collapse
Affiliation(s)
- S Antony Ceasar
- Division of Plant Molecular Biology & Biotechnology, Department of Biosciences, Rajagiri College of Social Sciences, Cochin, 683 104, Kerala, India.
| | - S Ignacimuthu
- Xavier Research Foundation, St. Xavier's College, Affiliated to the Manonmaniam Sundaranar University, Palayamkottai, 627 002, Tamil Nadu, India
| |
Collapse
|
11
|
Lim JA, Yaacob JS, Mohd Rasli SRA, Eyahmalay JE, El Enshasy HA, Zakaria MRS. Mitigating the repercussions of climate change on diseases affecting important crop commodities in Southeast Asia, for food security and environmental sustainability—A review. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2023. [DOI: 10.3389/fsufs.2022.1030540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Southeast Asia is a fertile land with a warm and humid climate which tends to accommodate various food crops. The development and advancement of the agricultural sector not only allows the countries in the region to feed the increasing population, but are also able to boost the nation's economy through exportation of the crops. Some of the well-known and economically-significant plant commodities found in the region include rice, oil palm, rubber, coconut, banana, sugarcane, pineapple, black pepper, maize, cocoa, durian, and jackfruit. Due to the high production of crops, Southeast Asia is able to stand among the top world producers of these commodities. Nevertheless, the widespread of pathogenic microorganisms has posed a serious threat to the industry over the years; with hundreds of millions of money wasted and total yield being lost due to the devastating diseases associated with each type of the plants. A lot of attention and effort have been continuously devoted to find effective plant management strategies to combat plant diseases, starting from traditional physical and chemical methods to the increasing discoveries on biological approaches made in recent decades. Due to the challenges and limitations faced by conventional approaches and the rising awareness toward the environment, more work has been focused on establishing the application of beneficial microorganisms to tackle plant diseases through direct mechanisms. Thus, by bringing the common plant commodities in Southeast Asia, their associated diseases and various physical, chemical and biological control measures together, this review aims to provide clearer insights and practical information to those who seek to limit the damages caused by plant diseases.
Collapse
|
12
|
Shih SY, Mortensen UH, Chang FR, Tsai H. Editing Aspergillus terreus using the CRISPR-Cas9 system. SYNTHETIC BIOLOGY (OXFORD, ENGLAND) 2022; 7:ysac031. [PMID: 36582448 PMCID: PMC9795164 DOI: 10.1093/synbio/ysac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/27/2022] [Accepted: 12/05/2022] [Indexed: 12/12/2022]
Abstract
CRISPR-Cas9 technology has been utilized in different organisms for targeted mutagenesis, offering a fast, precise and cheap approach to speed up molecular breeding and study of gene function. Until now, many researchers have established the demonstration of applying the CRISPR/Cas9 system to various fungal model species. However, there are very few guidelines available for CRISPR/Cas9 genome editing in Aspergillus terreus. In this study, we present CRISPR/Cas9 genome editing in A. terreus. To optimize the guide ribonucleic acid (gRNA) expression, we constructed a modified single-guide ribonucleic acid (sgRNA)/Cas9 expression plasmid. By co-transforming an sgRNA/Cas9 expression plasmid along with maker-free donor deoxyribonucleic acid (DNA), we precisely disrupted the lovB and lovR genes, respectively, and created targeted gene insertion (lovF gene) and iterative gene editing in A. terreus (lovF and lovR genes). Furthermore, co-delivering two sgRNA/Cas9 expression plasmids resulted in precise gene deletion (with donor DNA) in the ku70 and pyrG genes, respectively, and efficient removal of the DNA between the two gRNA targeting sites (no donor DNA) in the pyrG gene. Our results showed that the CRISPR/Cas9 system is a powerful tool for precise genome editing in A. terreus, and our approach provides a great potential for manipulating targeted genes and contributions to gene functional study of A. terreus.
Collapse
Affiliation(s)
- Sra-Yh Shih
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan
| | | | - Fang-Rong Chang
- Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung City, Taiwan,Graduate Institute of Natural Products, College of Pharmacy, Kaohsiung Medical University, Kaohsiung City, Taiwan
| | | |
Collapse
|
13
|
Sansinenea E. Microorganisms: a problem or a solution in our current life? Future Microbiol 2022; 17:1433-1435. [DOI: 10.2217/fmb-2021-0294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Estibaliz Sansinenea
- Facultad De Ciencias Químicas, Benemérita Universidad Autónoma De Puebla, Puebla, Pue, 72590, México
| |
Collapse
|
14
|
Karmakar S, Das P, Panda D, Xie K, Baig MJ, Molla KA. A detailed landscape of CRISPR-Cas-mediated plant disease and pest management. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111376. [PMID: 35835393 DOI: 10.1016/j.plantsci.2022.111376] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Genome editing technology has rapidly evolved to knock-out genes, create targeted genetic variation, install precise insertion/deletion and single nucleotide changes, and perform large-scale alteration. The flexible and multipurpose editing technologies have started playing a substantial role in the field of plant disease management. CRISPR-Cas has reduced many limitations of earlier technologies and emerged as a versatile toolbox for genome manipulation. This review summarizes the phenomenal progress of the use of the CRISPR toolkit in the field of plant pathology. CRISPR-Cas toolbox aids in the basic studies on host-pathogen interaction, in identifying virulence genes in pathogens, deciphering resistance and susceptibility factors in host plants, and engineering host genome for developing resistance. We extensively reviewed the successful genome editing applications for host plant resistance against a wide range of biotic factors, including viruses, fungi, oomycetes, bacteria, nematodes, insect pests, and parasitic plants. Recent use of CRISPR-Cas gene drive to suppress the population of pathogens and pests has also been discussed. Furthermore, we highlight exciting new uses of the CRISPR-Cas system as diagnostic tools, which rapidly detect pathogenic microorganism. This comprehensive yet concise review discusses innumerable strategies to reduce the burden of crop protection.
Collapse
Affiliation(s)
| | - Priya Das
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Debasmita Panda
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Key Laboratory of Plant Pathology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mirza J Baig
- ICAR-National Rice Research Institute, Cuttack 753006, India.
| | | |
Collapse
|
15
|
Tomato Response to Fusarium spp. Infection under Field Conditions: Study of Potential Genes Involved. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8050433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Tomato is one of the most important horticultural crops in the world and is severely affected by Fusarium diseases. To successfully manage these diseases, new insights on the expression of plant–pathogen interaction genes involved in immunity responses to Fusarium spp. infection are required. The aim of this study was to assess the level of infection of Fusarium spp. in field tomato samples and to evaluate the differential expression of target genes involved in plant–pathogen interactions in groups presenting different infection levels. Our study was able to detect Fusarium spp. in 16 from a total of 20 samples, proving the effectiveness of the primer set designed in the ITS region for its detection, and allowed the identification of two main different species complexes: Fusarium oxysporum and Fusarium incarnatum-equiseti. Results demonstrated that the level of infection positively influenced the expression of the transcription factor WRKY41 and the CBEF (calcium-binding EF hand family protein) genes, involved in plant innate resistance to pathogens. To the best of our knowledge, this is the first time that the expression of tomato defense-related gene expression is studied in response to Fusarium infection under natural field conditions. We highlight the importance of these studies for the identification of candidate genes to incorporate new sources of resistance in tomato and achieve sustainable plant disease management.
Collapse
|
16
|
Olivares F, Loyola R, Olmedo B, Miccono MDLÁ, Aguirre C, Vergara R, Riquelme D, Madrid G, Plantat P, Mora R, Espinoza D, Prieto H. CRISPR/Cas9 Targeted Editing of Genes Associated With Fungal Susceptibility in Vitis vinifera L. cv. Thompson Seedless Using Geminivirus-Derived Replicons. FRONTIERS IN PLANT SCIENCE 2021; 12:791030. [PMID: 35003180 PMCID: PMC8733719 DOI: 10.3389/fpls.2021.791030] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/29/2021] [Indexed: 05/14/2023]
Abstract
The woody nature of grapevine (Vitis vinifera L.) has hindered the development of efficient gene editing strategies to improve this species. The lack of highly efficient gene transfer techniques, which, furthermore, are applied in multicellular explants such as somatic embryos, are additional technical handicaps to gene editing in the vine. The inclusion of geminivirus-based replicons in regular T-DNA vectors can enhance the expression of clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) elements, thus enabling the use of these multicellular explants as starting materials. In this study, we used Bean yellow dwarf virus (BeYDV)-derived replicon vectors to express the key components of CRISPR/Cas9 system in vivo and evaluate their editing capability in individuals derived from Agrobacterium-mediated gene transfer experiments of 'Thompson Seedless' somatic embryos. Preliminary assays using a BeYDV-derived vector for green fluorescent protein reporter gene expression demonstrated marker visualization in embryos for up to 33 days post-infiltration. A universal BeYDV-based vector (pGMV-U) was assembled to produce all CRISPR/Cas9 components with up to four independent guide RNA (gRNA) expression cassettes. With a focus on fungal tolerance, we used gRNA pairs to address considerably large deletions of putative grape susceptibility genes, including AUXIN INDUCED IN ROOT CULTURE 12 (VviAIR12), SUGARS WILL EVENTUALLY BE EXPORTED TRANSPORTER 4 (VviSWEET4), LESION INITIATION 2 (VviLIN2), and DIMERIZATION PARTNER-E2F-LIKE 1 (VviDEL1). The editing functionality of gRNA pairs in pGMV-U was evaluated by grapevine leaf agroinfiltration assays, thus enabling longer-term embryo transformations. These experiments allowed for the establishment of greenhouse individuals exhibiting a double-cut edited status for all targeted genes under different allele-editing conditions. After approximately 18 months, the edited grapevine plants were preliminary evaluated regarding its resistance to Erysiphe necator and Botrytis cinerea. Assays have shown that a transgene-free VviDEL1 double-cut edited line exhibits over 90% reduction in symptoms triggered by powdery mildew infection. These results point to the use of geminivirus-based replicons for gene editing in grapevine and other relevant fruit species.
Collapse
Affiliation(s)
- Felipe Olivares
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Rodrigo Loyola
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Blanca Olmedo
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - María de los Ángeles Miccono
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Carlos Aguirre
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Ricardo Vergara
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Danae Riquelme
- Phytopathology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Gabriela Madrid
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Philippe Plantat
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Roxana Mora
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Daniel Espinoza
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| | - Humberto Prieto
- Biotechnology Laboratory, La Platina Research Station, National Institute of Agriculture Research, Santiago, Chile
| |
Collapse
|