1
|
Phillips DW, Lloyd A. Unravelling meiosis in wheat. THE NEW PHYTOLOGIST 2024; 244:341-343. [PMID: 38769736 DOI: 10.1111/nph.19853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
This article is a Commentary on Osman et al. (2024), 244: 528–541.
Collapse
Affiliation(s)
- Dylan W Phillips
- Department of Life Sciences, Aberystwyth University, Penglais, Aberystwyth, Ceredigion, SY23 3DA, UK
| | - Andrew Lloyd
- Institute of Biological, Environmental & Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion, SY23 3EE, UK
| |
Collapse
|
2
|
Osman K, Desjardins SD, Simmonds J, Burridge AJ, Kanyuka K, Henderson IR, Edwards KJ, Uauy C, Franklin FCH, Higgins JD, Sanchez-Moran E. FIGL1 prevents aberrant chromosome associations and fragmentation and limits crossovers in polyploid wheat meiosis. THE NEW PHYTOLOGIST 2024; 244:528-541. [PMID: 38584326 DOI: 10.1111/nph.19716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 03/10/2024] [Indexed: 04/09/2024]
Abstract
Meiotic crossovers (COs) generate genetic diversity and are crucial for viable gamete production. Plant COs are typically limited to 1-3 per chromosome pair, constraining the development of improved varieties, which in wheat is exacerbated by an extreme distal localisation bias. Advances in wheat genomics and related technologies provide new opportunities to investigate, and possibly modify, recombination in this important crop species. Here, we investigate the disruption of FIGL1 in tetraploid and hexaploid wheat as a potential strategy for modifying CO frequency/position. We analysed figl1 mutants and virus-induced gene silencing lines cytogenetically. Genetic mapping was performed in the hexaploid. FIGL1 prevents abnormal meiotic chromosome associations/fragmentation in both ploidies. It suppresses class II COs in the tetraploid such that CO/chiasma frequency increased 2.1-fold in a figl1 msh5 quadruple mutant compared with a msh5 double mutant. It does not appear to affect class I COs based on HEI10 foci counts in a hexaploid figl1 triple mutant. Genetic mapping in the triple mutant suggested no significant overall increase in total recombination across examined intervals but revealed large increases in specific individual intervals. Notably, the tetraploid figl1 double mutant was sterile but the hexaploid triple mutant was moderately fertile, indicating potential utility for wheat breeding.
Collapse
Affiliation(s)
- Kim Osman
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Stuart D Desjardins
- Department of Genetics and Genome Biology, University of Leicester, University Road, Adrian Building, Leicester, LE1 7RH, UK
| | - James Simmonds
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Amanda J Burridge
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Keith J Edwards
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Cristobal Uauy
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, University of Leicester, University Road, Adrian Building, Leicester, LE1 7RH, UK
| | | |
Collapse
|
3
|
Capilla-Pérez L, Solier V, Gilbault E, Lian Q, Goel M, Huettel B, Keurentjes JJB, Loudet O, Mercier R. Enhanced recombination empowers the detection and mapping of Quantitative Trait Loci. Commun Biol 2024; 7:829. [PMID: 38977904 PMCID: PMC11231358 DOI: 10.1038/s42003-024-06530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
Modern plant breeding, such as genomic selection and gene editing, is based on the knowledge of the genetic architecture of desired traits. Quantitative trait loci (QTL) analysis, which combines high throughput phenotyping and genotyping of segregating populations, is a powerful tool to identify these genetic determinants and to decipher the underlying mechanisms. However, meiotic recombination, which shuffles genetic information between generations, is limited: Typically only one to two exchange points, called crossovers, occur between a pair of homologous chromosomes. Here we test the effect on QTL analysis of boosting recombination, by mutating the anti-crossover factors RECQ4 and FIGL1 in Arabidopsis thaliana full hybrids and lines in which a single chromosome is hybrid. We show that increasing recombination ~6-fold empowers the detection and resolution of QTLs, reaching the gene scale with only a few hundred plants. Further, enhanced recombination unmasks some secondary QTLs undetected under normal recombination. These results show the benefits of enhanced recombination to decipher the genetic bases of traits.
Collapse
Affiliation(s)
- Laia Capilla-Pérez
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Victor Solier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Elodie Gilbault
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France
| | - Qichao Lian
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Manish Goel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany
- Ludwig-Maximilians-Universität München, Fakultät für Biologie, Biozentrum Martinsried, 82152, Planegg-Martinsried, Germany
| | - Bruno Huettel
- Max Planck Institute for Plant Breeding Research, MPIPZ, Genome Center, Carl-von-Linné Weg 10, 50829, Cologne, Germany
| | - Joost J B Keurentjes
- Laboratory of Genetics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Olivier Loudet
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000, Versailles, France.
| | - Raphael Mercier
- Max Planck Institute for Plant Breeding Research, MPIPZ, Department of Chromosome Biology, Carl-von-Linné Weg 10, 50829, Cologne, Germany.
| |
Collapse
|
4
|
Jin C, Dong L, Wei C, Wani MA, Yang C, Li S, Li F. Creating novel ornamentals via new strategies in the era of genome editing. FRONTIERS IN PLANT SCIENCE 2023; 14:1142866. [PMID: 37123857 PMCID: PMC10140431 DOI: 10.3389/fpls.2023.1142866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Ornamental breeding has traditionally focused on improving novelty, yield, quality, and resistance to biotic or abiotic stress. However, achieving these goals has often required laborious crossbreeding, while precise breeding techniques have been underutilized. Fortunately, recent advancements in plant genome sequencing and editing technology have opened up exciting new frontiers for revolutionizing ornamental breeding. In this review, we provide an overview of the current state of ornamental transgenic breeding and propose four promising breeding strategies that have already proven successful in crop breeding and could be adapted for ornamental breeding with the help of genome editing. These strategies include recombination manipulation, haploid inducer creation, clonal seed production, and reverse breeding. We also discuss in detail the research progress, application status, and feasibility of each of these tactics.
Collapse
Affiliation(s)
- Chunlian Jin
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Liqing Dong
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Chang Wei
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- School of Agriculture, Yunnan University, Kunming, China
| | - Muneeb Ahmad Wani
- Department of Floriculture and Landscape Architecture, Faculty of Horticulture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Srinagar, India
| | - Chunmei Yang
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
| | - Shenchong Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| | - Fan Li
- Floriculture Research Institute, Yunnan Academy of Agricultural Sciences, National Engineering Research Center for Ornamental Horticulture, Key Laboratory for Flower Breeding of Yunnan Province, Kunming, China
- *Correspondence: Fan Li, ; Shenchong Li,
| |
Collapse
|
5
|
Schreiber M, Chen YY, Ramsay L, Waugh R. Measuring the frequency and distribution of meiotic crossovers in homozygous barley inbred lines. FRONTIERS IN PLANT SCIENCE 2022; 13:965217. [PMID: 36035701 PMCID: PMC9403744 DOI: 10.3389/fpls.2022.965217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
We report a novel approach for establishing the number and position of CO events in individual homozygous inbred plants by combining low level EMS mutagenesis, speed breeding, whole genome shotgun sequencing and sliding window analysis of the induced molecular variant data. We demonstrate the approach by exploring CO frequency and distribution in self-fertilised progeny of the inbred barley cultivar Bowman and compare these observations to similar data obtained from a Bowman nearly isogenic line (BW230 Hvmlh3) containing a mutation in the DNA mismatch repair gene HvMLH3. We have previously shown that Hvmlh3 decreases both plant fertility and recombination by ~50%. We compare our results to those from previously published traditional genetic analysis of F3 families derived from multiple F2 lines containing WT or mutant alleles of HvMLH3, revealing a high level of correspondence between analyses. We discuss possible applications of the approach in streamlining the assessment of recombination in plant meiosis research.
Collapse
Affiliation(s)
- Miriam Schreiber
- Informational and Computational Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Yun-Yu Chen
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Luke Ramsay
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
| | - Robbie Waugh
- Cell and Molecular Sciences, James Hutton Institute, Dundee, United Kingdom
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
6
|
Desjardins SD, Simmonds J, Guterman I, Kanyuka K, Burridge AJ, Tock AJ, Sanchez-Moran E, Franklin FCH, Henderson IR, Edwards KJ, Uauy C, Higgins JD. FANCM promotes class I interfering crossovers and suppresses class II non-interfering crossovers in wheat meiosis. Nat Commun 2022; 13:3644. [PMID: 35752733 PMCID: PMC9233680 DOI: 10.1038/s41467-022-31438-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022] Open
Abstract
FANCM suppresses crossovers in plants by unwinding recombination intermediates. In wheat, crossovers are skewed toward the chromosome ends, thus limiting generation of novel allelic combinations. Here, we observe that FANCM maintains the obligate crossover in tetraploid and hexaploid wheat, thus ensuring that every chromosome pair exhibits at least one crossover, by localizing class I crossover protein HEI10 at pachytene. FANCM also suppresses class II crossovers that increased 2.6-fold in fancm msh5 quadruple mutants. These data are consistent with a role for FANCM in second-end capture of class I designated crossover sites, whilst FANCM is also required to promote formation of non-crossovers. In hexaploid wheat, genetic mapping reveals that crossovers increase by 31% in fancm compared to wild type, indicating that fancm could be an effective tool to accelerate breeding. Crossover rate differences in fancm correlate with wild type crossover distributions, suggesting that chromatin may influence the recombination landscape in similar ways in both wild type and fancm. The FANCM helicase functions in limiting crossovers (COs) by unwinding inter-homolog repair intermediates. Here, the authors generate null mutants of fancm in tetraploid and hexaploid wheat and show that FANCM promotes class I interfering COs and suppresses class II noninterfering COs in wheat meiosis.
Collapse
Affiliation(s)
- Stuart D Desjardins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - James Simmonds
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - Inna Guterman
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - Kostya Kanyuka
- NIAB, 93 Lawrence Weaver Road, Cambridge, CB3 0LE, UK.,Biointeractions and Crop Protection, Rothamsted Research, Harpenden, AL5 2JQ, UK
| | - Amanda J Burridge
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Andrew J Tock
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | | | - F Chris H Franklin
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ian R Henderson
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Keith J Edwards
- Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Cristobal Uauy
- Department of Crop Genetics, John Innes Centre, Norwich, NR4 7UH, UK
| | - James D Higgins
- Department of Genetics and Genome Biology, Adrian Building, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| |
Collapse
|
7
|
Reece AS, Hulse GK. Epidemiology of Δ8THC-Related Carcinogenesis in USA: A Panel Regression and Causal Inferential Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:7726. [PMID: 35805384 PMCID: PMC9265369 DOI: 10.3390/ijerph19137726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 12/26/2022]
Abstract
The use of Δ8THC is increasing at present across the USA in association with widespread cannabis legalization and the common notion that it is "legal weed". As genotoxic actions have been described for many cannabinoids, we studied the cancer epidemiology of Δ8THC. Data on 34 cancer types was from the Centers for Disease Control Atlanta Georgia, substance abuse data from the Substance Abuse and Mental Health Services Administration, ethnicity and income data from the U.S. Census Bureau, and cannabinoid concentration data from the Drug Enforcement Agency, were combined and processed in R. Eight cancers (corpus uteri, liver, gastric cardia, breast and post-menopausal breast, anorectum, pancreas, and thyroid) were related to Δ8THC exposure on bivariate testing, and 18 (additionally, stomach, Hodgkins, and Non-Hodgkins lymphomas, ovary, cervix uteri, gall bladder, oropharynx, bladder, lung, esophagus, colorectal cancer, and all cancers (excluding non-melanoma skin cancer)) demonstrated positive average marginal effects on fully adjusted inverse probability weighted interactive panel regression. Many minimum E-Values (mEVs) were infinite. p-values rose from 8.04 × 10-78. Marginal effect calculations revealed that 18 Δ8THC-related cancers are predicted to lead to a further 8.58 cases/100,000 compared to 7.93 for alcoholism and -8.48 for tobacco. Results indicate that between 8 and 20/34 cancer types were associated with Δ8THC exposure, with very high effect sizes (mEVs) and marginal effects after adjustment exceeding tobacco and alcohol, fulfilling the epidemiological criteria of causality and suggesting a cannabinoid class effect. The inclusion of pediatric leukemias and testicular cancer herein demonstrates heritable malignant teratogenesis.
Collapse
Affiliation(s)
- Albert Stuart Reece
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| | - Gary Kenneth Hulse
- Division of Psychiatry, University of Western Australia, Crawley, WA 6009, Australia;
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA 6027, Australia
| |
Collapse
|
8
|
Fayos I, Frouin J, Meynard D, Vernet A, Herbert L, Guiderdoni E. Manipulation of Meiotic Recombination to Hasten Crop Improvement. BIOLOGY 2022; 11:369. [PMID: 35336743 PMCID: PMC8945028 DOI: 10.3390/biology11030369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/15/2023]
Abstract
Reciprocal (cross-overs = COs) and non-reciprocal (gene conversion) DNA exchanges between the parental chromosomes (the homologs) during meiotic recombination are, together with mutation, the drivers for the evolution and adaptation of species. In plant breeding, recombination combines alleles from genetically diverse accessions to generate new haplotypes on which selection can act. In recent years, a spectacular progress has been accomplished in the understanding of the mechanisms underlying meiotic recombination in both model and crop plants as well as in the modulation of meiotic recombination using different strategies. The latter includes the stimulation and redistribution of COs by either modifying environmental conditions (e.g., T°), harnessing particular genomic situations (e.g., triploidy in Brassicaceae), or inactivating/over-expressing meiotic genes, notably some involved in the DNA double-strand break (DSB) repair pathways. These tools could be particularly useful for shuffling diversity in pre-breeding generations. Furthermore, thanks to the site-specific properties of genome editing technologies the targeting of meiotic recombination at specific chromosomal regions nowadays appears an attainable goal. Directing COs at desired chromosomal positions would allow breaking linkage situations existing between favorable and unfavorable alleles, the so-called linkage drag, and accelerate genetic gain. This review surveys the recent achievements in the manipulation of meiotic recombination in plants that could be integrated into breeding schemes to meet the challenges of deploying crops that are more resilient to climate instability, resistant to pathogens and pests, and sparing in their input requirements.
Collapse
Affiliation(s)
- Ian Fayos
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Julien Frouin
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Donaldo Meynard
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Aurore Vernet
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Léo Herbert
- Meiogenix, 38 rue Sevran, 75011 Paris, France; (I.F.); (L.H.)
| | - Emmanuel Guiderdoni
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France; (J.F.); (D.M.); (A.V.)
- UMR AGAP Institut, Université de Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|