1
|
Xiang Y, Yuan H, Mao M, Hu Q, Dong Y, Wang L, Wu B, Luo Z, Li L. Reciprocal inhibition of autophagy and Botrytis cinerea-induced programmed cell death in 'Shine Muscat' grapes. Food Chem 2024; 460:140512. [PMID: 39047497 DOI: 10.1016/j.foodchem.2024.140512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Accepted: 07/16/2024] [Indexed: 07/27/2024]
Abstract
Botrytis cinerea causes gray mold, decreasing the quality of table grapes. The berry response to B. cinerea infection was explored in present study, focusing on the relationship between presence of autophagy and programmed cell death (PCD). Results demonstrated B. cinerea infection decreased cell viability, triggering cell death, possibly resulting in PCD occurrence. It was further verified by increased terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive nuclei, heightened caspase 3-like and caspase 9-like protease activity, and elevated expression of metacaspase genes. Additionally, autophagy was indicated by the increased VvATG expression and autophagosome formation. Notably, the autophagy activator rapamycin reduced TUNEL-positive nuclei, whereas the autophagy inhibitor 3-methyladenine increased caspase 9-like protease activity. The PCD activator C2-ceramide inhibited autophagy, whereas the PCD inhibitor Acetyl-Asp-Glu-Val-Asp-aldehyde (Ac-DEVD-CHO) enhanced autophagy gene expression. Autophagy and B. cinerea-induced PCD in berry cells are reciprocally negatively regulated; and the rapamycin and Ac-DEVD-CHO could potentially maintain table grape edible quality.
Collapse
Affiliation(s)
- Yizhou Xiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Hemao Yuan
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Mengfei Mao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Qiannan Hu
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Yingying Dong
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Lei Wang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China.
| | - Bin Wu
- Institute of Agro-products Storage and Processing & Xinjiang Key Laboratory of Processing and Preservation of Agricultural Products, Xinjiang Academy of Agricultural Science, Urumqi 830091, China.
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| | - Li Li
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Key Laboratory of Agro-Products Postharvest Handling, Ministry of Agriculture and Rural Affairs, Zhejiang University, Hangzhou, China; National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Zhejiang Engineering Laboratory of Food Technology and Equipment, Zhejiang University, Hangzhou, China; Ningbo Research Institute, Zhejiang University, Ningbo, China.
| |
Collapse
|
2
|
Liu Y, Dancker P, Biendl M, Coelhan M. Comparison of polyfunctional thiol, element, and total essential oil contents in 32 hop varieties from different countries. Food Chem 2024; 455:139855. [PMID: 38833861 DOI: 10.1016/j.foodchem.2024.139855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/20/2024] [Accepted: 05/25/2024] [Indexed: 06/06/2024]
Abstract
Volatile thiol 3-mercaptohexan-1-ol (3MH) and particularly 4-mercapto-4-methylpentan-2-one (4MMP) are highly potent flavour compounds in hops. For the determination, a simple and robust stable isotope dilution LC-MS/MS method was developed and applied to 32 hop varieties worldwide from harvest years 2019 and 2020. Limit of detection, precision, and recovery were 0.15 μg/kg, 10%, and 97-108%, respectively. Levels of 3MH and 4MMP ranged from 1.9 to 79.2 μg/kg and from undetectable to 37.1 μg/kg, respectively. Citra, Mosaic, and Strata were rich in both thiols. ICP analyses revealed, that variation of potassium content between the two harvest years was inversely correlated with that of manganese and rubidium (|r| ≥ 0.89) among 12 US varieties excluding Citra and Mosaic. Total essential oil content (0.34-2.7 mL/100 g) was inversely correlated with calcium content (|r| ≥ 0.65). Greatly varying thiol levels depending on variety, region and harvest year might lead to differing flavour results in beer.
Collapse
Affiliation(s)
- Yang Liu
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany.
| | - Philipp Dancker
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany.
| | - Martin Biendl
- Halletauer Hopfenveredlungsgesellschaft m.b.H., Auhofstr. 10, 84048 Mainburg, Germany.
| | - Mehmet Coelhan
- Research Center Weihenstephan for Brewing and Food Quality, Technical University of Munich, Alte Akademie 3, 85354 Freising, Germany.
| |
Collapse
|
3
|
Griesser M, Savoi S, Bondada B, Forneck A, Keller M. Berry shrivel in grapevine: a review considering multiple approaches. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:2196-2213. [PMID: 38174592 PMCID: PMC11016843 DOI: 10.1093/jxb/erae001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Grapevine berry shrivel, a ripening disorder, causes significant economic losses in the worldwide wine and table grape industries. An early interruption in ripening leads to this disorder, resulting in shriveling and reduced sugar accumulation affecting yield and fruit quality. Loss of sink strength associated with berry mesocarp cell death is an early symptom of this disorder; however, potential internal or external triggers are yet to be explored. No pathogens have been identified that might cause the ripening syndrome. Understanding the underlying causes and mechanisms contributing to berry shrivel is crucial for developing effective mitigation strategies and finding solutions for other ripening disorders associated with climacteric and non-climacteric fruits. This review discusses alterations in the fruit ripening mechanism induced by berry shrivel disorder, focusing primarily on sugar transport and metabolism, cell wall modification and cell death, and changes in the phytohormone profile. The essential open questions are highlighted and analyzed, thus identifying the critical knowledge gaps and key challenges for future research.
Collapse
Affiliation(s)
- Michaela Griesser
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Largo Braccini 2, 10095 Grugliasco, Italy
| | - Bhaskar Bondada
- Department of Viticulture and Enology, Washington State University Tri-Cities, Richland, WA 99354, USA
| | - Astrid Forneck
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, Konrad Lorenz Strasse 24, 3430 Tulln, Austria
| | - Markus Keller
- Department of Viticulture and Enology, Irrigated Agriculture Research and Extension Center, Washington State University, Prosser, WA 99350, USA
| |
Collapse
|
4
|
Ricciardi V, Crespan M, Maddalena G, Migliaro D, Brancadoro L, Maghradze D, Failla O, Toffolatti SL, De Lorenzis G. Novel loci associated with resistance to downy and powdery mildew in grapevine. FRONTIERS IN PLANT SCIENCE 2024; 15:1386225. [PMID: 38584944 PMCID: PMC10998452 DOI: 10.3389/fpls.2024.1386225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/06/2024] [Indexed: 04/09/2024]
Abstract
Among the main challenges in current viticulture, there is the increasing demand for sustainability in the protection from fungal diseases, such as downy mildew (DM) and powdery mildew (PM). Breeding disease-resistant grapevine varieties is a key strategy for better managing fungicide inputs. This study explores the diversity of grapevine germplasm (cultivated and wild) from Caucasus and neighboring areas to identify genotypes resistant to DM and PM, based on 13 Simple Sequence Repeat (SSR) loci and phenotypical (artificial pathogen inoculation) analysis, and to identify loci associated with DM and PM resistance, via Genome-Wide Association Analysis (GWAS) on Single Nucleotide Polymorphism (SNP) profiles. SSR analysis revealed resistant alleles for 16 out of 88 genotypes. Phenotypic data identified seven DM and 31 PM resistant genotypes. GWAS identified two new loci associated with DM resistance, located on chromosome 15 and 16 (designated as Rpv36 and Rpv37), and two with PM resistance, located on chromosome 6 and 17 (designated as Ren14 and Ren15). The four novel loci identified genomic regions rich in genes related to biotic stress response, such as genes involved in pathogen recognition, signal transduction and resistance response. This study highlights potential candidate genes associated with resistance to DM and PM, providing valuable insights for breeding programs for resistant varieties. To optimize their utilization, further functional characterization studies are recommended.
Collapse
Affiliation(s)
- Valentina Ricciardi
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Manna Crespan
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Giuliana Maddalena
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Daniele Migliaro
- Centro di Ricerca per la Viticoltura e l'Enologia, Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA), Conegliano, Italy
| | - Lucio Brancadoro
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - David Maghradze
- Faculty of Viticulture-Winemaking, Caucasus International University, Tbilisi, Georgia
- Faculty of Agricultural Sciences and Biosystems Engineering, Georgian Technical University, Tbilisi, Georgia
| | - Osvaldo Failla
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Silvia Laura Toffolatti
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| | - Gabriella De Lorenzis
- Dipartimento di Scienze Agrarie ed Ambientali, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
5
|
Salerno A, D’Amico M, Bergamini C, Maggiolini FAM, Vendemia M, Prencipe A, Catacchio CR, Ventura M, Cardone MF, Marsico AD. On the Way to the Technological Development of Newly Selected Non- Saccharomyces Yeasts Selected as Innovative Biocontrol Agents in Table Grapes. Microorganisms 2024; 12:340. [PMID: 38399744 PMCID: PMC10891982 DOI: 10.3390/microorganisms12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/29/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Post-harvest decay of fresh table grapes causes considerable annual production losses. The main fungal agents of decay both in pre- and post-harvest are B. cinerea, Penicillium spp., Aspergillus spp., Alternaria spp., and Cladosporium spp. To date, the use of agrochemicals and SO2 are the main methods to control grape molds in pre- and postharvest, respectively. Significant improvements, however, have already been made in to apply innovative and more environmentally sustainable control strategies, such as Biological Control Agents (BCAs), which can reduce disease severity in both pre- and post-harvest. In this study, 31 new non-Saccharomyces yeast strains, isolated from berries of native Apulian table grape genotypes, were tested for their in vivo effectiveness against grey mold of table grapes, resulting in two St. bacillaris ('N22_I1' and 'S13_I3'), one S. diversa ('N22_I3'), one A. pullulans ('OLB_9.1_VL') and one H. uvarum ('OLB_9.1_BR') yeast strains that were marked as efficient and good BCAs. Their mechanisms of action were characterized through in vitro assays, and additional characteristics were evaluated to assess the economic feasibility and viability for future technological employment. Their effectiveness was tested by reducing the working concentration, their antagonistic effect on a wide range of fungal pathogens, their ability to survive in formulations with long shelf life, and their safety to human health.
Collapse
Affiliation(s)
- Antonella Salerno
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (C.R.C.); (M.V.)
| | - Margherita D’Amico
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| | - Carlo Bergamini
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| | - Flavia Angela Maria Maggiolini
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| | - Marco Vendemia
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| | - Annalisa Prencipe
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (C.R.C.); (M.V.)
| | - Claudia Rita Catacchio
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (C.R.C.); (M.V.)
| | - Mario Ventura
- Department of Biosciences, Biotechnology and Environment, University of Bari “Aldo Moro”, Via Orabona 4, 70125 Bari, Italy (C.R.C.); (M.V.)
| | - Maria Francesca Cardone
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| | - Antonio Domenico Marsico
- Council for Agricultural Research and Economics, Research Center Viticulture and Enology (CREA-VE), Via Casamassima 148, 70010 Turi, Italy; (A.S.); (C.B.); (F.A.M.M.)
| |
Collapse
|
6
|
Vigneron N, Grimplet J, Remolif E, Rienth M. Unravelling molecular mechanisms involved in resistance priming against downy mildew (Plasmopara viticola) in grapevine (Vitis vinifera L.). Sci Rep 2023; 13:14664. [PMID: 37674030 PMCID: PMC10482922 DOI: 10.1038/s41598-023-41981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 09/04/2023] [Indexed: 09/08/2023] Open
Abstract
Downy mildew (DM; Plasmopara viticola) is amongst the most severe fungal diseases in viticulture and the reason for the majority of fungicide applications. To reduce synthetic and copper-based fungicides, there is an urgent need for natural alternatives, which are being increasingly tested by the industry and the research community. However, their mode of action remains unclear. Therefore, our study aimed to investigate the transcriptomic changes induced by oregano essential oil vapour (OEOV) in DM-infected grapevines. OEOV was applied at different time points before and after DM infection to differentiate between a priming effect and a direct effect. Both pre-DM treatment with OEOV and post-infection treatment resulted in a significant reduction in DM sporulation. RNA-seq, followed by differential gene expression and weighted gene co-expression network analysis, identified co-expressed gene modules associated with secondary metabolism, pathogen recognition and response. Surprisingly, the molecular mechanisms underlying the efficiency of OEOV against DM appear to be independent of stilbene synthesis, and instead involve genes from a putative signalling pathway that has yet to be characterized. This study enhances our understanding of the molecular regulation of innate plant immunity and provides new insights into the mode of action of alternative natural antifungal agents.
Collapse
Affiliation(s)
- Nicolas Vigneron
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 60, 1260, Nyon, Switzerland
| | - Jérôme Grimplet
- Departamento de Ciencia Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Avda. Montanaña 930, 50059, Zaragoza, Spain
- Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), 50013, Zaragoza, Spain
| | - Eric Remolif
- Agroscope, Plant Protection, Mycology, Route de Duillier 60, 1260, Nyon, Switzerland
| | - Markus Rienth
- University of Sciences and Art Western Switzerland, Changins College for Viticulture and Enology, Route de Duillier 60, 1260, Nyon, Switzerland.
| |
Collapse
|
7
|
Ferrandino A, Pagliarani C, Pérez-Álvarez EP. Secondary metabolites in grapevine: crosstalk of transcriptional, metabolic and hormonal signals controlling stress defence responses in berries and vegetative organs. FRONTIERS IN PLANT SCIENCE 2023; 14:1124298. [PMID: 37404528 PMCID: PMC10315584 DOI: 10.3389/fpls.2023.1124298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 05/26/2023] [Indexed: 07/06/2023]
Abstract
Abiotic stresses, such as temperature, heat waves, water limitation, solar radiation and the increase in atmospheric CO2 concentration, significantly influence the accumulation of secondary metabolites in grapevine berries at different developmental stages, and in vegetative organs. Transcriptional reprogramming, miRNAs, epigenetic marks and hormonal crosstalk regulate the secondary metabolism of berries, mainly the accumulation of phenylpropanoids and of volatile organic compounds (VOCs). Currently, the biological mechanisms that control the plastic response of grapevine cultivars to environmental stress or that occur during berry ripening have been extensively studied in many worlds viticultural areas, in different cultivars and in vines grown under various agronomic managements. A novel frontier in the study of these mechanisms is the involvement of miRNAs whose target transcripts encode enzymes of the flavonoid biosynthetic pathway. Some miRNA-mediated regulatory cascades, post-transcriptionally control key MYB transcription factors, showing, for example, a role in influencing the anthocyanin accumulation in response to UV-B light during berry ripening. DNA methylation profiles partially affect the berry transcriptome plasticity of different grapevine cultivars, contributing to the modulation of berry qualitative traits. Numerous hormones (such as abscisic and jasmomic acids, strigolactones, gibberellins, auxins, cytokynins and ethylene) are involved in triggering the vine response to abiotic and biotic stress factors. Through specific signaling cascades, hormones mediate the accumulation of antioxidants that contribute to the quality of the berry and that intervene in the grapevine defense processes, highlighting that the grapevine response to stressors can be similar in different grapevine organs. The expression of genes responsible for hormone biosynthesis is largely modulated by stress conditions, thus resulting in the numeourous interactions between grapevine and the surrounding environment.
Collapse
Affiliation(s)
- Alessandra Ferrandino
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Torino, Grugliasco, Italy
| | - Chiara Pagliarani
- National Research Council, Institute for Sustainable Plant Protection (CNR-IPSP), Torino, Italy
| | - Eva Pilar Pérez-Álvarez
- Grupo VIENAP. Finca La Grajera, Instituto de Ciencias de la Vid y del Vino (ICVV), Logroño, La Rioja, Spain
| |
Collapse
|
8
|
Moukarzel R, Parker AK, Schelezki OJ, Gregan SM, Jordan B. Bunch microclimate influence amino acids and phenolic profiles of Pinot noir grape berries. FRONTIERS IN PLANT SCIENCE 2023; 14:1162062. [PMID: 37351210 PMCID: PMC10282841 DOI: 10.3389/fpls.2023.1162062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/05/2023] [Indexed: 06/24/2023]
Abstract
Introduction The increase of temperature due to climate change at different phenological stages of grapevine has already been demonstrated to affect accumulation of primary and secondary metabolites in grape berries. This has a significant implication for Pinot noir especially in New Zealand context as these compounds can have direct and indirect effects on wine quality. Methods This study investigates how varying bunch microclimate through changes in temperature applied at veraison stage can affect: fresh weight, total soluble solids, the accumulation of anthocyanins, total phenolics and amino acids of the grape berries. This was studied over two growing seasons (2018/19 and 2019/20) with Pinot noir vines being grown at two different temperatures in controlled environment (CE) chambers. The vines were exposed to 800 µmol/m2/s irradiance with diurnal changes in day (22°C or 30°C) and night (15°C) temperatures. This experimental set up enabled us to determine the accumulation of these metabolite at harvest (both seasons) and throughout berry development (second season). Results and discussion The results showed that berry weight was not influenced by temperature increase. The total soluble solids (TSS) were significantly increased at 30°C, however, this was not at the expense of berry weight (i.e., water loss). Anthocyanin content was reduced at higher temperature in the first season but there was no change in phenolic content in response to temperature treatments in either season. The concentrations of total amino acids at harvest increased in response to the higher temperature in the second season only. In addition, in the time course analysis of the second season, the accumulation of amino acids was increased at mid-ripening and ripening stage with the increased temperature. Significant qualitative changes in amino acid composition specifically the α-ketoglutarate family (i.e., glutamine, arginine, and proline) were found between the two temperatures. Significance This study is the first to provide detailed analysis and quantification of individual amino acids and phenolics in Pinot noir in response to changes in temperature applied at veraison which could aid to develop adaptation strategies for viticulture in the future.
Collapse
Affiliation(s)
- Romy Moukarzel
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Amber K. Parker
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | - Olaf J. Schelezki
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| | | | - Brian Jordan
- Department of Wine, Food and Molecular Biosciences, Lincoln University, Lincoln, New Zealand
| |
Collapse
|
9
|
Agostinelli F, Caldeira I, Ricardo-da-Silva JM, Damásio M, Egipto R, Silvestre J. First Approach to the Aroma Characterization of Monovarietal Red Wines Produced from Varieties Better Adapted to Abiotic Stresses. PLANTS (BASEL, SWITZERLAND) 2023; 12:2063. [PMID: 37653980 PMCID: PMC10224026 DOI: 10.3390/plants12102063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/04/2023] [Accepted: 05/16/2023] [Indexed: 09/02/2023]
Abstract
Adaptation strategies in the wine sector consist of the use of cultural techniques to limit damages caused by climate change, using, among other resources, varieties better adapted to the scenarios of abiotic stress exacerbation, namely water and thermal stress, as well as those more tolerant to heatwaves. With the intention to determine the aromatic characterization of ten monovarietal wines produced from cultivars with high productive performance in a global warming scenario ('Petit Verdot', 'Marselan', 'Merlot', 'Touriga Franca', 'Syrah', 'Vinhão', 'Bobal', 'Preto Martinho', 'Trincadeira', and 'Alicante Bouschet'), grown in Esporão vineyard (Alentejo, Portugal) and submitted to deficit irrigation (Ks ± 0.5), their aromatic character has been analyzed. Each grape variety was vinified at a small scale, in duplicate, and the wines were evaluated by a sensory panel, which rated several sensory attributes (visual, olfactory, and gustatory). Sensory analysis revealed a discrete appreciation for the monovarietal wines tasted, showing a differentiation at the olfactory level that was not too marked, although present, between the samples. The free volatile compounds were analysed using gas chromatography-olfactometry (GC-O), identified using a gas chromatography-mass spectrometry (GC-MS) technique and semi-quantified using the gas chromatography-flame ionization detector (GC-FID) technique. Based on the interpolation of the results of the various statistical analyses carried out, 49 probable odor active compounds (pOACs) were identified and based on the odor activity values (OAVs), 24 of them were recognized as odor active compounds (OACs) originated mainly during the fermentation processes. An aromatic characterization of the varieties has been proposed.
Collapse
Affiliation(s)
- Francesco Agostinelli
- Department of Agricultural, Forest and Food Sciences, University of Torino, Via Verdi, 8, 10124 Torino, Italy;
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ilda Caldeira
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
- MED—Mediterranean Institute for Agriculture, Environment and Development and CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, 7006-554 Évora, Portugal
| | - Jorge M. Ricardo-da-Silva
- LEAF—Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, 1349-017 Lisbon, Portugal;
| | - Miguel Damásio
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - Ricardo Egipto
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| | - José Silvestre
- Polo de Inovação de Dois Portos, Instituto Nacional de Investigação Agrária e Veterinária, Quinta de Almoinha, 2565-191 Dois Portos, Portugal; (M.D.); (R.E.); (J.S.)
| |
Collapse
|
10
|
Ciubotaru RM, Franceschi P, Vezzulli S, Zulini L, Stefanini M, Oberhuber M, Robatscher P, Chitarrini G, Vrhovsek U. Secondary and primary metabolites reveal putative resistance-associated biomarkers against Erysiphe necator in resistant grapevine genotypes. FRONTIERS IN PLANT SCIENCE 2023; 14:1112157. [PMID: 36798701 PMCID: PMC9927228 DOI: 10.3389/fpls.2023.1112157] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Numerous fungicide applications are required to control Erysiphe necator, the causative agent of powdery mildew. This increased demand for cultivars with strong and long-lasting field resistance to diseases and pests. In comparison to the susceptible cultivar 'Teroldego', the current study provides information on some promising disease-resistant varieties (mono-locus) carrying one E. necator-resistant locus: BC4 and 'Kishmish vatkana', as well as resistant genotypes carrying several E. necator resistant loci (pyramided): 'Bianca', F26P92, F13P71, and NY42. A clear picture of the metabolites' alterations in response to the pathogen is shown by profiling the main and secondary metabolism: primary compounds and lipids; volatile organic compounds and phenolic compounds at 0, 12, and 48 hours after pathogen inoculation. We identified several compounds whose metabolic modulation indicated that resistant plants initiate defense upon pathogen inoculation, which, while similar to the susceptible genotype in some cases, did not imply that the plants were not resistant, but rather that their resistance was modulated at different percentages of metabolite accumulation and with different effect sizes. As a result, we discovered ten up-accumulated metabolites that distinguished resistant from susceptible varieties in response to powdery mildew inoculation, three of which have already been proposed as resistance biomarkers due to their role in activating the plant defense response.
Collapse
Affiliation(s)
- Ramona Mihaela Ciubotaru
- Department of Agri-Food, Environmental and Animal Sciences, University of Udine, Udine, Italy
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Pietro Franceschi
- Unit of Computational Biology, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Silvia Vezzulli
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Luca Zulini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Marco Stefanini
- Genomics and Biology of Fruit Crops Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michelle All'Adige, Italy
| | - Michael Oberhuber
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Peter Robatscher
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Giulia Chitarrini
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
- Laboratory for Flavours and Metabolites, Laimburg Research Centre, Auer (Ora), Italy
| | - Urska Vrhovsek
- Food Quality and Nutrition Department, Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
11
|
Savoi S, Supapvanich S, Hildebrand H, Stralis-Pavese N, Forneck A, Kreil DP, Griesser M. Expression Analyses in the Rachis Hint towards Major Cell Wall Modifications in Grape Clusters Showing Berry Shrivel Symptoms. PLANTS (BASEL, SWITZERLAND) 2022; 11:2159. [PMID: 36015462 PMCID: PMC9413262 DOI: 10.3390/plants11162159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Berry shrivel (BS) is one of the prominent and still unresolved ripening physiological disorders in grapevine. The causes of BS are unclear, and previous studies focused on the berry metabolism or histological studies, including cell viability staining in the rachis and berries of BS clusters. Herein, we studied the transcriptional modulation induced by BS in the rachis of pre-symptomatic and symptomatic clusters with a custom-made microarray qPCR in relation to a previous RNASeq study of BS berries. Gene set analysis of transcript expression in symptomatic rachis tissue determined suppression of cell wall biosynthesis, which could also be confirmed already in pre-symptomatic BS rachis by CESA8 qPCR analyses, while in BS berries, a high number of SWITCH genes were suppressed at veraison. Additionally, genes associated with the cell wall were differently affected by BS in berries. A high percentage of hydrolytic enzymes were induced in BS grapes in rachis and berries, while other groups such as, e.g., xyloglucan endotransglucosylase/hydrolase, were suppressed in BS rachis. In conclusion, we propose that modulated cell wall biosynthesis and cell wall assembly in pre-symptomatic BS rachis have potential consequences for cell wall strength and lead to a forced degradation of cell walls in symptomatic grape clusters. The similarity to sugar starvation transcriptional profiles provides a link to BS berries, which are low in sugar accumulation. However, further studies remain necessary to investigate the temporal and spatial coordination in both tissues.
Collapse
Affiliation(s)
- Stefania Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Suriyan Supapvanich
- Department of Agricultural Education, School of Industrial Education and Technology, King Mongkut’s Institute of Technology Ladkrabang, 1 Chalongkrung Road, Ladkrabang, Bangkok 10520, Thailand
| | - Heinrich Hildebrand
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| | - Nancy Stralis-Pavese
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
- Institute of Computational Biology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Astrid Forneck
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| | - David P. Kreil
- Institute of Molecular Biotechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Muthgasse 18, 1190 Vienna, Austria
| | - Michaela Griesser
- Institute of Viticulture and Pomology, Department of Crop Sciences, University of Natural Resources and Life Sciences, Vienna, 3430 Tulln an der Donau, Austria
| |
Collapse
|
12
|
Reynard JS, Brodard J, Zufferey V, Rienth M, Gugerli P, Schumpp O, Blouin AG. Nuances of Responses to Two Sources of Grapevine Leafroll Disease on Pinot Noir Grown in the Field for 17 Years. Viruses 2022; 14:1333. [PMID: 35746804 PMCID: PMC9227476 DOI: 10.3390/v14061333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/15/2022] [Accepted: 06/15/2022] [Indexed: 11/25/2022] Open
Abstract
Grapevine leafroll disease (GLD) is one of the most economically damaging virus diseases in grapevine, with grapevine leafroll-associated virus 1 (GLRaV-1) and grapevine leafroll-associated virus 3 (GLRaV-3) as the main contributors. This study complements a previously published transcriptomic analysis and compared the impact of two different forms of GLD to a symptomless control treatment: a mildly symptomatic form infected with GLRaV-1 and a severe form with exceptionally early leafroll symptoms (up to six weeks before veraison) infected with GLRaV-1 and GLRaV-3. Vine physiology and fruit composition in 17-year-old Pinot noir vines were measured and a gradient of vigor, yield, and berry quality (sugar content and berry weight) was observed between treatments. Virome composition, confirmed by individual RT-PCR, was compared with biological indexing. Three divergent viromes were recovered, containing between four to seven viruses and two viroids. They included the first detection of grapevine asteroid mosaic-associated virus in Switzerland. This virus did not cause obvious symptoms on the indicators used in biological indexing. Moreover, the presence of grapevine virus B (GVB) did not cause the expected corky bark symptoms on the indicators, thus underlining the important limitations of the biological indexing. Transmission of GLRaV-3 alone or in combination with GVB by Planococcus comstocki mealybug did not reproduce the strong symptoms observed on the donor plant infected with a severe form of GLD. This result raises questions about the contribution of each virus to the symptomatology of the plant.
Collapse
Affiliation(s)
| | - Justine Brodard
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Vivian Zufferey
- Groupe Viticulture, Agroscope, 1009 Pully, Switzerland; (J.-S.R.); (V.Z.)
| | - Markus Rienth
- Changins College for Viticulture and Oenology, University of Sciences and Art Western Switzerland, 1260 Nyon, Switzerland;
| | - Paul Gugerli
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Olivier Schumpp
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| | - Arnaud G. Blouin
- Virology-Phytoplasmology Laboratory, Agroscope, 1260 Nyon, Switzerland; (J.B.); (P.G.); (O.S.)
| |
Collapse
|
13
|
Nuzzo F, Moine A, Nerva L, Pagliarani C, Perrone I, Boccacci P, Gribaudo I, Chitarra W, Gambino G. Grapevine virome and production of healthy plants by somatic embryogenesis. Microb Biotechnol 2022; 15:1357-1373. [PMID: 35182024 PMCID: PMC9049623 DOI: 10.1111/1751-7915.14011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 11/30/2022] Open
Abstract
Grapevine (Vitis spp.) is a widespread fruit tree hosting many viral entities that interact with the plant modifying its responses to the environment. The production of virus‐free plants is becoming increasingly crucial for the use of grapevine as a model species in different studies. Using high‐throughput RNA sequencing, the viromes of seven mother plants grown in a germplasm collection vineyard were sequenced. In addition to the viruses and viroids already detected in grapevine, we identified 13 putative new mycoviruses. The different spread among grapevine tissues collected in vineyard, greenhouse and in vitro conditions suggested a clear distinction between viruses/viroids and mycoviruses that can successfully be exploited for their identification. Mycoviruses were absent in in vitro cultures, while plant viruses and viroids were particularly accumulated in these plantlets. Somatic embryogenesis applied to the seven mother plants was effective in the elimination of the complete virome, including mycoviruses. However, different sanitization efficiencies for viroids and grapevine pinot gris virus were observed among genotypes. The absence of mycoviruses in in vitro plantlets, associated with the absence of all viral entities in somaclones, suggested that this regeneration technique is also effective to eradicate endophytic/epiphytic fungi, resulting in gnotobiotic or pseudo‐gnotobiotic plants.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Amedeo Moine
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Ivana Gribaudo
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| | - Walter Chitarra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy.,Council for Agricultural Research and Economics - Research Centre for Viticulture and Enology CREA-VE, Via XXVIII Aprile 26, Conegliano, 31015, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), Torino, Strada delle Cacce 73, Torino, 10135, Italy
| |
Collapse
|