1
|
Zhao X, Wang S, Zhang H, Dong S, Chen J, Sun Y, Zhang Y, Liu Q. Genome-wide identification, expression analysis of the R2R3-MYB gene family and their potential roles under cold stress in Prunus sibirica. BMC Genomics 2024; 25:953. [PMID: 39402463 PMCID: PMC11472476 DOI: 10.1186/s12864-024-10868-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND The R2R3-MYB transcription factors in plants participate in various physiological and biochemical processes and responds to various external stimuli. Prunus sibirica (known as Siberian apricot) is a drupe tree species that produces extremely high nutritional value kernels. However, it is susceptiblility to frost damage during the flowering period, results in a marked reduction in kernel yield. RESULTS In this study, the MYB gene family of P. sibirica (PsMYB) was systematically analyzed, and 116 R2R3-MYB genes that were distributed unevenly over eight chromosomes were ultimately screened. Phylogenetic analysis divided these 116 genes into 30 subgroups. We discovered that 37 PsMYBs had cold stress-responsive promoters, and six PsMYBs were annotated to be associated with cold response. Intraspecific homology analysis identified segmental duplication as the primary gene amplification mechanism, and homology analysis of the PsMYB genes with those of five other species revealed phylogenetic relationships with Rosaceae species. Protein interaction studies revealed collaborative regulation of the PsMYB proteins with Arabidopsis protein, and transcriptome analysis identified PsMYB genes that were highly expressed at low temperatures. Additionally, the expression levels of 22 PsMYBs in different tissue parts of P. sibirica and under different low-temperature stress conditions were evaluated using quantitative real-time PCR, with the results verifying that PsMYBs are specifically expressed in different plant parts and may be involved in the growth and development of P. sibirica species. Genes upregulated after exposure to low-temperature stress and likely involved in cold response were identified. CONCLUSION This study lays a foundation for understanding the molecular biology of PsMYBs in P. sibirica and provides a theoretical basis for the future study of transgenic lines with cold resistance during the flowering period of this tree.
Collapse
Affiliation(s)
- Xin Zhao
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongrui Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yueyuan Zhang
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, 110866, China.
- Key Laboratory for Silviculture of Liaoning Province, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
2
|
Fan X, Sun H. Exploring Agrobacterium-mediated genetic transformation methods and its applications in Lilium. PLANT METHODS 2024; 20:120. [PMID: 39123215 PMCID: PMC11313100 DOI: 10.1186/s13007-024-01246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024]
Abstract
As a typical bulb flower, lily is widely cultivated worldwide because of its high ornamental, medicinal and edible value. Although breeding efforts evolved over the last 10000 years, there are still many problems in the face of increasing consumer demand. The approach of biotechnological methods would help to solve this problem and incorporate traits impossible by conventional breeding. Target traits are dormancy, development, color, floral fragrance and resistances against various biotic and abiotic stresses, so as to improve the quality of bulbs and cut flowers in planting, cultivation, postharvest, plant protection and marketing. Genetic transformation technology is an important method for varietal improvement and has become the foundation and core of plant functional genomics research, greatly assisting various plant improvement programs. However, achieving stable and efficient genetic transformation of lily has been difficult worldwide. Many gene function verification studies depend on the use of model plants, which greatly limits the pace of directed breeding and germplasm improvement in lily. Although significant progress has been made in the development and optimization of genetic transformation systems, shortcomings remain. Agrobacterium-mediated genetic transformation has been widely used in lily. However, severe genotypic dependence is the main bottleneck limiting the genetic transformation of lily. This review will summarizes the research progress in the genetic transformation of lily over the past 30 years to generate the material including a section how genome engineering using stable genetic transformation system, and give an overview about recent and future applications of lily transformation. The information provided in this paper includes ideas for optimizing and improving the efficiency of existing genetic transformation methods and for innovation, provides technical support for mining and identifying regulatory genes for key traits, and lays a foundation for genetic improvement and innovative germplasm development in lily.
Collapse
Affiliation(s)
- Xinyue Fan
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongmei Sun
- Key Laboratory of Protected Horticulture of Education Ministry, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China.
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang, 110866, China.
| |
Collapse
|
3
|
Ma Y, Wei M, Zhang T, Wang Y, Duan P, Wang L, Kong W, Zhang G, Wei B. Functional analysis of the CaPIPLC5 gene in the regulation of the fertility restoration in pepper. PHYSIOLOGIA PLANTARUM 2024; 176:e14429. [PMID: 39039026 DOI: 10.1111/ppl.14429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/30/2024] [Accepted: 06/23/2024] [Indexed: 07/24/2024]
Abstract
Cytoplasmic male sterility (CMS) is a very important factor to produce hybrid seeds, and the restoration of fertility involves the expression of many fertility-related genes. Our previous study showed that the expression of CaPIPLC5 was significantly up-regulated in pepper restorer accessions and minimally expressed in sterile accessions, speculating that CaPIPLC5 is related to the restoration of fertility. In this study, we further validated the function of CaPIPLC5 in the restoration of fertility. The results showed that CaPIPLC5 was specifically expressed in the anthers of the restorer accessions with the subcellular localization in the cytoplasm. Furthermore, the expression of CaPIPLC5 was significantly higher in restorer lines and restorer combinations than that in CMS lines and their maintainer lines. Silencing CaPIPLC5 led to the number of pollen decreased, pollen grains wrinkled, and the ratio of pollen germination reduced. In addition, the joint analysis of Yeast One-Hybrid (Y1H) and Dual-Luciferase (dual-LUC) assays suggested that transcription factors such as CaARF5, CabZIP24 and CaMYB-like1, interacted with the promoter regions of CaPIPLC5, which regulated the expression of CaPIPLC5. The present results provide new insights into the study of CaPIPLC5 involved in the restoration of fertility in pepper.
Collapse
Affiliation(s)
- Yan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ming Wei
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Tao Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yuhang Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Panpan Duan
- Vegetable Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Lina Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Weifu Kong
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
4
|
Qian Z, Shi D, Zhang H, Li Z, Huang L, Yan X, Lin S. Transcription Factors and Their Regulatory Roles in the Male Gametophyte Development of Flowering Plants. Int J Mol Sci 2024; 25:566. [PMID: 38203741 PMCID: PMC10778882 DOI: 10.3390/ijms25010566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/30/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024] Open
Abstract
Male gametophyte development in plants relies on the functions of numerous genes, whose expression is regulated by transcription factors (TFs), non-coding RNAs, hormones, and diverse environmental stresses. Several excellent reviews are available that address the genes and enzymes associated with male gametophyte development, especially pollen wall formation. Growing evidence from genetic studies, transcriptome analysis, and gene-by-gene studies suggests that TFs coordinate with epigenetic machinery to regulate the expression of these genes and enzymes for the sequential male gametophyte development. However, very little summarization has been performed to comprehensively review their intricate regulatory roles and discuss their downstream targets and upstream regulators in this unique process. In the present review, we highlight the research progress on the regulatory roles of TF families in the male gametophyte development of flowering plants. The transcriptional regulation, epigenetic control, and other regulators of TFs involved in male gametophyte development are also addressed.
Collapse
Affiliation(s)
- Zhihao Qian
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Dexi Shi
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Hongxia Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Zhenzhen Li
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China;
| | - Xiufeng Yan
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Sue Lin
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China; (Z.Q.); (D.S.); (H.Z.); (Z.L.)
- Zhejiang Provincial Key Laboratory for Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
5
|
Si Z, Wang L, Ji Z, Zhao M, Zhang K, Qiao Y. Comparative analysis of the MYB gene family in seven Ipomoea species. FRONTIERS IN PLANT SCIENCE 2023; 14:1155018. [PMID: 37021302 PMCID: PMC10067929 DOI: 10.3389/fpls.2023.1155018] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The MYB transcription factors regulate plant growth, development, and defense responses. However, information about the MYB gene family in Ipomoea species is rare. Herein, we performed a comprehensive genome-wide comparative analysis of this gene family among seven Ipomoea species, sweet potato (I. batatas), I. trifida, I. triloba, I. nil, I. purpurea, I. cairica, and I. aquatic, and identified 296, 430, 411, 291, 226, 281, and 277 MYB genes, respectively. The identified MYB genes were classified into five types: 1R-MYB (MYB-related), 2R-MYB (R2R3-MYB), 3R-MYB (R1R2R3-MYB), 4R-MYB, and 5R-MYB, and the MYB-related or R2R3-MYB type was the most abundant MYB genes in the seven species. The Ipomoea MYB genes were classed into distinct subgroups based on the phylogenetic topology and the classification of the MYB superfamily in Arabidopsis. Analysis of gene structure and protein motifs revealed that members within the same phylogenetic group presented similar exon/intron and motif organization. The identified MYB genes were unevenly mapped on the chromosomes of each Ipomoea species. Duplication analysis indicated that segmental and tandem duplications contribute to expanding the Ipomoea MYB genes. Non-synonymous substitution (Ka) to synonymous substitution (Ks) [Ka/Ks] analysis showed that the duplicated Ipomoea MYB genes are mainly under purifying selection. Numerous cis-regulatory elements related to stress responses were detected in the MYB promoters. Six sweet potato transcriptome datasets referring to abiotic and biotic stresses were analyzed, and MYB different expression genes' (DEGs') responses to stress treatments were detected. Moreover, 10 sweet potato MYB DEGs were selected for qRT-PCR analysis. The results revealed that four responded to biotic stress (stem nematodes and Ceratocystis fimbriata pathogen infection) and six responded to the biotic stress (cold, drought, and salt). The results may provide new insights into the evolution of MYB genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Lianjun Wang
- Institute of Food Corps, Hubei Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Mingming Zhao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinghuangdao, Hebei, China
| |
Collapse
|
6
|
Rhein HS, Sreedasyam A, Cooke P, Velasco-Cruz C, Grimwood J, Schmutz J, Jenkins J, Kumar S, Song M, Heerema RJ, Grauke LJ, Randall JJ. Comparative transcriptome analyses reveal insights into catkin bloom patterns in pecan protogynous and protandrous cultivars. PLoS One 2023; 18:e0281805. [PMID: 36795673 PMCID: PMC9934368 DOI: 10.1371/journal.pone.0281805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 02/01/2023] [Indexed: 02/17/2023] Open
Abstract
In perennial plants such as pecan, once reproductive maturity is attained, there are genetic switches that are regulated and required for flower development year after year. Pecan trees are heterodichogamous with both pistillate and staminate flowers produced on the same tree. Therefore, defining genes exclusively responsible for pistillate inflorescence and staminate inflorescence (catkin) initiation is challenging at best. To understand these genetic switches and their timing, this study analyzed catkin bloom and gene expression of lateral buds collected from a protogynous (Wichita) and a protandrous (Western) pecan cultivar in summer, autumn and spring. Our data showed that pistillate flowers in the current season on the same shoot negatively impacted catkin production on the protogynous 'Wichita' cultivar. Whereas fruit production the previous year on 'Wichita' had a positive effect on catkin production on the same shoot the following year. However, fruiting the previous year nor current year pistillate flower production had no significant effect on catkin production on 'Western' (protandrous cultivar) cultivar. The RNA-Seq results present more significant differences between the fruiting and non-fruiting shoots of the 'Wichita' cultivar compared to the 'Western' cultivar, revealing the genetic signals likely responsible for catkin production. Our data presented here, indicates the genes showing expression for the initiation of both types of flowers the season before bloom.
Collapse
Affiliation(s)
- Hormat Shadgou Rhein
- Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Avinash Sreedasyam
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Peter Cooke
- Microscopy Core Facility, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Ciro Velasco-Cruz
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Jane Grimwood
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jeremy Schmutz
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Jerry Jenkins
- HudsonAlpha Institute for Biotechnology, Huntsville, Alabama, United States of America
| | - Sajal Kumar
- Department of Computer Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Mingzhou Song
- Department of Computer Science, New Mexico State University, Las Cruces, New Mexico, United States of America
| | - Richard J. Heerema
- Departments of Plant and Environmental Sciences and Extension Plant Sciences, Las Cruces, New Mexico, United States of America
| | - L. J. Grauke
- USDA ARS Pecan Breeding and Genetics, Somerville, Texas, United States of America
| | - Jennifer J. Randall
- Molecular Biology Program, New Mexico State University, Las Cruces, New Mexico, United States of America
- Department of Entomology, Plant Pathology, and Weed Science, New Mexico State University, Las Cruces, New Mexico, United States of America
- * E-mail:
| |
Collapse
|
7
|
Dong T, Wang L, Wang R, Yang X, Jia W, Yi M, Zhou X, He J. Transcriptomic analysis reveals candidate genes associated with anther development in Lilium Oriental Hybrid 'Siberia'. FRONTIERS IN PLANT SCIENCE 2023; 14:1128911. [PMID: 36844086 PMCID: PMC9945121 DOI: 10.3389/fpls.2023.1128911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Lily (Lilium spp. and hybrids) is an important cut flower crop worldwide. Lily flowers have large anthers, which release a large amount of pollen that stains the tepals or clothing and thus can affect the commercial value of cut flowers. In this study, lily Oriental 'Siberia' was used to investigate the regulatory mechanism of lily anther development, which may provide information to prevent pollen pollution in the future. Based on the flower bud length, anther length and color, and anatomical observations, lily anther development was categorized into five stages: green (G), green-to-yellow 1 (GY1), green-to-yellow 2 (GY2), yellow (Y), and purple (P). Total RNA was extracted from the anthers at each stage for transcriptomic analysis. A total of 268.92-Gb clean reads were generated, and 81,287 unigenes were assembled and annotated. The number of differentially expressed genes (DEGs) and unique genes were largest for the pairwise comparison between the G and GY1 stages. The G and P samples were clustered separately, whereas the GY1, GY2, and Y samples were clustered together in scatter plots from a principal component analysis. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses of DEGs detected in the GY1, GY2, and Y stages revealed that the pectin catabolic process, hormone levels, and phenylpropanoid biosynthesis were enriched. The DEGs associated with jasmonic acid biosynthesis and signaling were highly expressed at the early stages (G and GY1), whereas the DEGs associated with phenylpropanoid biosynthesis were mainly expressed in the intermediate stages (GY1, GY2, and Y). The DEGs involved in the pectin catabolic process were expressed at advanced stages (Y and P). Cucumber mosaic virus-induced gene silencing of LoMYB21 and LoAMS caused a strongly inhibited anther dehiscence phenotype, but without affecting the development of other floral organs. These results provide novel insights for understanding the regulatory mechanism of anther development in lily and other plants.
Collapse
Affiliation(s)
- Tingting Dong
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Lixuan Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Rui Wang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xi Yang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Wenjie Jia
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
- Flower Research Institute, Yunnan Academy of Agriculture Sciences, Kunming, China
| | - Mingfang Yi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Xiaofeng Zhou
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Junna He
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
8
|
Yang X, Wang K, Ge L, Chen X, Zhang L, Song X. Transcription factor TaGAMYB from wheat (Triticum aestivum L.) regulates flowering time and fertility in transgenic Arabidopsis thaliana. PLANTA 2022; 257:16. [PMID: 36534157 DOI: 10.1007/s00425-022-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
The loss of TaGAMYB function in Arabidopsis results in abnormal pollen development and leads to decreased fertility. This process may be regulated by microRNAs, which suppress the expression of fatty acid pathway genes. Development of the anthers and pollen is significantly influenced by the transcription factor GAMYB. However, our knowledge of GAMYB in wheat is limited. Here, under fertility and sterility conditions, we identified the distinct transcripts TaGAMYB-d and TaGAMYB-g in thermosensitive genic sterile wheat YanZhan 4110S and confirmed their functions. TaGAMYB-g overexpression decreased the pollen vigor and germination rates, thereby reducing fertility. TaGAMYB-d overexpression lines exhibited early flowering. Due to aberrant pollen germination, the mutant homologous TaGAMYB genes in Arabidopsis thaliana also resulted in lower fertility. Our findings indicate that TaGAMYB controls the fertility and flowering time in transgenic Arabidopsis thaliana.
Collapse
Affiliation(s)
- Xuetong Yang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kai Wang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Limeng Ge
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xianning Chen
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Lingli Zhang
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
9
|
Yu J, Xu S, Liu X, Li T, Zhang D, Teng N, Wu Z. Starch Degradation and Sucrose Accumulation of Lily Bulbs after Cold Storage. Int J Mol Sci 2022; 23:4366. [PMID: 35457184 PMCID: PMC9029042 DOI: 10.3390/ijms23084366] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/12/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022] Open
Abstract
Functional lilies are a group of edible lily cultivars with great potential for landscape application. Low-temperature storage can significantly improve their taste, but the knowledge of this process is largely unknown. In this study, we used the functional lilies 'Fly Shaohua' and 'Fly Tiancheng' as materials. Through physiological observation and transcriptome analysis during the bulbs' cold storage, it was found that the starch degradation and sucrose accumulation in bulbs contributed to taste improvement. After 60 d of cold storage, the sucrose accumulation was highest and the starch content was lower in the bulbs, suggesting this time-point was optimal for consumption. Accompanying the fluctuation of sucrose content during cold storage, the enzyme activities of sucrose phosphate synthase and sucrose synthase for sucrose synthesis were increased. Transcriptome analysis showed that many differentially expressed genes (DEGs) were involved in the starch and sucrose metabolism pathway, which might promote the conversion of starch to sucrose in bulbs. In addition, the DEGs involved in dormancy and stress response were also determined during cold storage, which might explain the decreased sucrose accumulation with extended storage time over 60 d due to the energy consumption for dormancy release. Taken together, our results indicated sucrose accumulation was a main factor in the taste improvement of lily bulbs after cold storage, which is attributable to the different gene expression of starch and sucrose metabolism pathways in this process.
Collapse
Affiliation(s)
- Junpeng Yu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Sujuan Xu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinyue Liu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ting Li
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Dehua Zhang
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Nianjun Teng
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ze Wu
- Key Laboratory of Landscaping Agriculture, Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China; (J.Y.); (S.X.); (X.L.); (T.L.); (D.Z.); (N.T.)
- Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|