1
|
Watanabe T, Imai N, Hiradate S, Maruyama H, Wasaki J. Why can Palhinhaea cernua (lycophyte) grow closer to fumaroles in highly acidic solfatara fields? JOURNAL OF PLANT RESEARCH 2025; 138:19-35. [PMID: 39523227 DOI: 10.1007/s10265-024-01587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 09/26/2024] [Indexed: 11/16/2024]
Abstract
Palhinhaea cernua, a lycophyte, and Dicranopteris linearis, a fern, are commonly observed in solfatara fields in Kyushu, Japan, but their distribution trends are different. The aim of this study was to determine why P. cernua is more abundant in areas closer to fumaroles from both a soil and plant perspective. Samples of P. cernua and D. linearis, as well as their respective growing soils, were collected, and the mineral properties, including the concentration of various mineral elements and inorganic anions and δ15N, were determined. P. cernua was better adapted to soil with lower pH, higher soluble aluminum concentrations, and poorer calcium and phosphorus concentrations than D. linearis. A positive correlation was observed between shoot nitrogen concentration and both shoot sulfur concentration and soil water-soluble sulfur concentration in P. cernua, implying the involvement of sulfur in nitrogen acquisition in P. cernua. The results also suggested that D. linearis mainly uses soil NO3-N, while P. cernua uses NH4-N, which is predominant and excessive in the solfatara fields, particularly near the fumaroles. This high preference for NH4-N in P. cernua was confirmed through a cultivation experiment. While D. linearis prefers NO3-N and distributes further from fumaroles, P. cernua may have survived in the solfatara fields by utilizing NH4-N and sulfur, which are abundant near fumaroles where competition from other plant species is minimal.
Collapse
Affiliation(s)
- Toshihiro Watanabe
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 0608589, Japan.
| | - Nozomi Imai
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 0608589, Japan
| | - Syuntaro Hiradate
- Faculty of Agriculture, Kyushu University, 744 Moto-Oka, Nishi-ku, Fukuoka, 8190395, Japan
| | - Hayato Maruyama
- Research Faculty of Agriculture, Hokkaido University, Kita-9, Nishi-9, Kita-ku, Sapporo, 0608589, Japan
| | - Jun Wasaki
- Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama 1-7-1, Higashi, Hiroshima, 7398521, Japan
| |
Collapse
|
2
|
Roy S, Torres-Jerez I, Zhang S, Liu W, Schiessl K, Jain D, Boschiero C, Lee HK, Krom N, Zhao PX, Murray JD, Oldroyd GED, Scheible WR, Udvardi M. The peptide GOLVEN10 alters root development and noduletaxis in Medicago truncatula. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:607-625. [PMID: 38361340 DOI: 10.1111/tpj.16626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/27/2023] [Accepted: 12/27/2023] [Indexed: 02/17/2024]
Abstract
The conservation of GOLVEN (GLV)/ROOT MERISTEM GROWTH FACTOR (RGF) peptide encoding genes across plant genomes capable of forming roots or root-like structures underscores their potential significance in the terrestrial adaptation of plants. This study investigates the function and role of GOLVEN peptide-coding genes in Medicago truncatula. Five out of fifteen GLV/RGF genes were notably upregulated during nodule organogenesis and were differentially responsive to nitrogen deficiency and auxin treatment. Specifically, the expression of MtGLV9 and MtGLV10 at nodule initiation sites was contingent upon the NODULE INCEPTION transcription factor. Overexpression of these five nodule-induced GLV genes in hairy roots of M. truncatula and application of their synthetic peptide analogues led to a decrease in nodule count by 25-50%. Uniquely, the GOLVEN10 peptide altered the positioning of the first formed lateral root and nodule on the primary root axis, an observation we term 'noduletaxis'; this decreased the length of the lateral organ formation zone on roots. Histological section of roots treated with synthetic GOLVEN10 peptide revealed an increased cell number within the root cortical cell layers without a corresponding increase in cell length, leading to an elongation of the root likely introducing a spatiotemporal delay in organ formation. At the transcription level, the GOLVEN10 peptide suppressed expression of microtubule-related genes and exerted its effects by changing expression of a large subset of Auxin responsive genes. These findings advance our understanding of the molecular mechanisms by which GOLVEN peptides modulate root morphology, nodule ontogeny, and interactions with key transcriptional pathways.
Collapse
Affiliation(s)
- Sonali Roy
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Ivone Torres-Jerez
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Shulan Zhang
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Wei Liu
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | | | - Divya Jain
- College of Agriculture, Tennessee State University, Nashville, Tennessee, 37209, USA
| | | | - Hee-Kyung Lee
- Institute of Agricultural Biosciences, Oklahoma State University, Ardmore, Oklahoma, 73401, USA
| | - Nicholas Krom
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Patrick X Zhao
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
| | - Jeremy D Murray
- Shanghai Institute of Plant Physiology and Ecology, Shanghai, 200032, China
| | - Giles E D Oldroyd
- Sainsbury Laboratory, University of Cambridge, Cambridge, CB2 1LR, UK
| | | | - Michael Udvardi
- Noble Research Institute, LLC, Ardmore, Oklahoma, 73401, USA
- University of Queensland, Brisbane, Australia
| |
Collapse
|
3
|
Motte H, Fang T, Parizot B, Smet W, Yang X, Poelmans W, Walker L, Njo M, Bassel GW, Beeckman T. Cellular and gene expression patterns associated with root bifurcation in Selaginella. PLANT PHYSIOLOGY 2022; 190:2398-2416. [PMID: 36029252 PMCID: PMC9706437 DOI: 10.1093/plphys/kiac402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
The roots of lycophytes branch through dichotomy or bifurcation, during which the root apex splits into two daughter roots. This is morphologically distinct from lateral root (LR) branching in the extant euphyllophytes, with LRs developing along the root axis at different distances from the apex. Although the process of root bifurcation is poorly understood, such knowledge can be important, because it may represent an evolutionarily ancient strategy that roots recruited to form new stem cells or meristems. In this study, we examined root bifurcation in the lycophyte Selaginella moellendorffii. We characterized an in vitro developmental time frame based on repetitive apex bifurcations, allowing us to sample different stages of dichotomous root branching and analyze the root meristem and root branching in S. moellendorffii at the microscopic and transcriptomic level. Our results showed that, in contrast to previous assumptions, initial cells (ICs) in the root meristem are mostly not tetrahedral but rather show an irregular shape. Tracking down the early stages of root branching argues for the occurrence of a symmetric division of the single IC, resulting in two apical stem cells that initiate root meristem bifurcation. Moreover, we generated a S. moellendorffii root branching transcriptome that resulted in the delineation of a subset of core meristem genes. The occurrence of multiple putative orthologs of meristem genes in this dataset suggests the presence of conserved pathways in the control of meristem and root stem cell establishment or maintenance.
Collapse
Affiliation(s)
- Hans Motte
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Tao Fang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Wouter Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Xilan Yang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Ward Poelmans
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - Liam Walker
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Maria Njo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| | - George W Bassel
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Tom Beeckman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- VIB Center for Plant Systems Biology, 9052 Ghent, Belgium
| |
Collapse
|