1
|
Lim H, Denison MIJ, Lee K, Natarajan S, Kim TL, Oh C. Genome-Wide Characterization of Glyceraldehyde-3-Phosphate Dehydrogenase Genes and Their Expression Profile under Drought Stress in Quercus rubra. PLANTS (BASEL, SWITZERLAND) 2024; 13:2312. [PMID: 39204748 PMCID: PMC11360533 DOI: 10.3390/plants13162312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is crucial in plant metabolism and responses to various abiotic stresses. In the glycolysis pathway, glyceraldehyde-3-phosphate (G3P) is oxidized to 1,3-bisphosphate glycerate (1,3-BPG) through the catalytic action of GAPDH. However, the GAPDH gene family in Quercus rubra has been minimally researched. In this study, we identified 13 GAPDH-encoding genes in Q. rubra through a bioinformatics analysis of genomic data. Evolutionary studies suggest that these QrGAPDH genes are closely related to those in Glycine max and Triticum aestivum. We conducted a comprehensive whole-genome study, which included predictions of subcellular localization, gene structure analysis, protein motif identification, chromosomal placement, and analysis of cis-acting regions. We also examined the expression of GAPDH proteins and genes in various tissues of Q. rubra and under drought stress. The results indicated diverse expression patterns across different tissues and differential expression under drought conditions. Notably, the expression of Qurub.02G290300.1, Qurub.10G209800.1, and Qrub.M241600.1 significantly increased in the leaf, stem, and root tissues under drought stress. This study provides a systematic analysis of QrGAPDH genes, suggesting their pivotal roles in the drought stress response of trees.
Collapse
Affiliation(s)
- Hyemin Lim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | | | - Kyungmi Lee
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | | | - Tae-Lim Kim
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| | - Changyoung Oh
- Department of Forest Bioresources, National Institute of Forest Science, Suwon 16631, Republic of Korea; (K.L.); (T.-L.K.); (C.O.)
| |
Collapse
|
2
|
Song K, Zhang X, Liu J, Yao Q, Li Y, Hou X, Liu S, Qiu X, Yang Y, Chen L, Hong K, Lin L. Integration of Metabolomics and Transcriptomics to Explore Dynamic Alterations in Fruit Color and Quality in 'Comte de Paris' Pineapples during Ripening Processes. Int J Mol Sci 2023; 24:16384. [PMID: 38003574 PMCID: PMC10671212 DOI: 10.3390/ijms242216384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/24/2023] [Accepted: 11/04/2023] [Indexed: 11/26/2023] Open
Abstract
Pineapple color yellowing and quality promotion gradually manifest as pineapple fruit ripening progresses. To understand the molecular mechanism underlying yellowing in pineapples during ripening, coupled with alterations in fruit quality, comprehensive metabolome and transcriptome investigations were carried out. These investigations were conducted using pulp samples collected at three distinct stages of maturity: young fruit (YF), mature fruit (MF), and fully mature fruit (FMF). This study revealed a noteworthy increase in the levels of total phenols and flavones, coupled with a concurrent decline in lignin and total acid contents as the fruit transitioned from YF to FMF. Furthermore, the analysis yielded 167 differentially accumulated metabolites (DAMs) and 2194 differentially expressed genes (DEGs). Integration analysis based on DAMs and DEGs revealed that the biosynthesis of plant secondary metabolites, particularly the flavonol, flavonoid, and phenypropanoid pathways, plays a pivotal role in fruit yellowing. Additionally, RNA-seq analysis showed that structural genes, such as FLS, FNS, F3H, DFR, ANR, and GST, in the flavonoid biosynthetic pathway were upregulated, whereas the COMT, CCR, and CAD genes involved in lignin metabolism were downregulated as fruit ripening progressed. APX as well as PPO, and ACO genes related to the organic acid accumulations were upregulated and downregulated, respectively. Importantly, a comprehensive regulatory network encompassing genes that contribute to the metabolism of flavones, flavonols, lignin, and organic acids was proposed. This network sheds light on the intricate processes that underlie fruit yellowing and quality alterations. These findings enhance our understanding of the regulatory pathways governing pineapple ripening and offer valuable scientific insight into the molecular breeding of pineapples.
Collapse
Affiliation(s)
- Kanghua Song
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xiumei Zhang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Jiameng Liu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Quansheng Yao
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Yixing Li
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China;
| | - Xiaowan Hou
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Shenghui Liu
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Xunxia Qiu
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| | - Yue Yang
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Li Chen
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Keqian Hong
- Key Laboratory for Postharvest Physiology and Technology of Tropical Horticultural Products of Hainan Province, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524091, China; (K.S.); (X.Z.); (Q.Y.); (X.H.); (S.L.); (Y.Y.); (L.C.)
| | - Lijing Lin
- Hainan Key Laboratory of Storage & Processing of Fruits and Vegetables, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China; (J.L.); (X.Q.)
| |
Collapse
|
3
|
Bian X, Cao Y, Zhi X, Ma N. Genome-Wide Identification and Analysis of the Plant Cysteine Oxidase (PCO) Gene Family in Brassica napus and Its Role in Abiotic Stress Response. Int J Mol Sci 2023; 24:11242. [PMID: 37511002 PMCID: PMC10379087 DOI: 10.3390/ijms241411242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/05/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Plant Cysteine Oxidase (PCO) is a plant O2-sensing enzyme catalyzing the oxidation of cysteine to Cys-sulfinic acid at the N-termini of target proteins. To better understand the Brassica napus PCO gene family, PCO genes in B. napus and related species were analyzed. In this study, 20, 7 and 8 PCO genes were identified in Brassica napus, Brassica rapa and Brassica oleracea, respectively. According to phylogenetic analysis, the PCOs were divided into five groups: PCO1, PCO2, PCO3, PCO4 and PCO5. Gene organization and motif distribution analysis suggested that the PCO gene family was relatively conserved during evolution. According to the public expression data, PCO genes were expressed in different tissues at different developmental stages. Moreover, qRT-PCR data showed that most of the Bna/Bra/BoPCO5 members were expressed in leaves, roots, flowers and siliques, suggesting an important role in both vegetative and reproductive development. Expression of BnaPCO was induced by various abiotic stress, especially waterlogging stress, which was consistent with the result of cis-element analysis. In this study, the PCO gene family of Brassicaceae was analyzed for the first time, which contributes to a comprehensive understanding of the origin and evolution of PCO genes in Brassicaceae and the function of BnaPCO in abiotic stress responses.
Collapse
Affiliation(s)
- Xiaohua Bian
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Yifan Cao
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| | - Ximin Zhi
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Ni Ma
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China
| |
Collapse
|
4
|
Danaeipour Z, Garoosi G, Tohidfar M, Bakhtiarizadeh MR, Mirjalili MH. Comprehensive RNA-Seq-based study and metabolite profiling to identify genes involved in podophyllotoxin biosynthesis in Linum album Kotschy ex Boiss. (Linaceae). Sci Rep 2023; 13:9219. [PMID: 37286620 DOI: 10.1038/s41598-023-36102-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 05/30/2023] [Indexed: 06/09/2023] Open
Abstract
Linum album is a well-known rich source of anticancer compounds, i.e., podophyllotoxin (PTOX) and other lignans. These compounds play an important role in the plant's defensive system. The RNA-Seq data of flax (L. usitatissimum) were analyzed under various biotic and abiotic stresses to comprehend better the importance of lignans in plant defense responses. Then, the association between the lignan contents and some related gene expressions was experimented with HPLC and qRT-PCR, respectively. Transcriptomic profiling showed a specific expression pattern in different organs, and just the commonly regulated gene EP3 was detected with a significant increase under all stresses. The in silico analysis of the PTOX biosynthesis pathway identified a list of genes, including laccase (LAC11), lactoperoxidase (POD), 4-coumarate-CoA ligase (4CL), and secoisolariciresinol dehydrogenase (SDH). These genes increased significantly under individual stresses. The HPLC analysis showed that the measured lignan contents generally increased under stress. In contrast, a quantitative expression of the genes involved in this pathway using qRT-PCR showed a different pattern that seems to contribute to regulating PTOX content in response to stress. Identified modifications of critical genes related to PTOX biosynthesis in response to multiple stresses can provide a baseline for improving PTOX content in L. album.
Collapse
Affiliation(s)
- Zahra Danaeipour
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, 3414916818, Iran
| | - Ghasemali Garoosi
- Department of Biotechnology, Faculty of Agriculture and Natural Resources, Imam Khomeini International University, Qazvin, 3414916818, Iran.
| | - Masoud Tohidfar
- Department of Cell and Molecular Biology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, 1983969411, Iran.
| | | | - Mohammad Hossein Mirjalili
- Department of Agriculture, Medicinal Plants and Drugs Research Institute, Shahid Beheshti University, Tehran, 1983969411, Iran
| |
Collapse
|
5
|
Zhao Q, Dong M, Li M, Jin L, Paré PW. Light-Induced Flavonoid Biosynthesis in Sinopodophyllum hexandrum with High-Altitude Adaptation. PLANTS (BASEL, SWITZERLAND) 2023; 12:575. [PMID: 36771657 PMCID: PMC9919621 DOI: 10.3390/plants12030575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/19/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Sinopodophyllum hexandrum is a perennial alpine herb producing the anti-cancer metabolite podophyllotoxin (PPT). Although the adaptation of S. hexandrum to high altitudes has been demonstrated and the effects of temperature, precipitation, and UV-B light on plant growth and metabolite accumulation have been studied, knowledge on the role of flavonoid biosynthesis in adapting to high altitudes is limited. In this study, light intensity, amount and type of flavonoids, and differentially expressed proteins (DEPs) and genes (DEGs) at 2300 and 3300 m were analyzed by HPLC, proteomic, transcriptomic, and qRT-PCR analysis. We found that higher light intensity correlated with greater flavonoid, flavonol, and anthocyanin content as well as higher anthocyanin to total flavonoid and flavonol ratios observed at the higher altitude. Based on proteomic and transcriptomic analyses, nine DEPs and 41 DEGs were identified to be involved in flavonoid biosynthesis and light response at 3300 m. The relative expression of nine genes (PAL, CHS1, IFRL, ANS, MYB4, BHLH137, CYP6, PPO1, and ABCB19) involved in flavonoid biosynthesis and seven genes (HSP18.1, HSP70, UBC4, ERF5, ERF9, APX3, and EX2) involved in light stress were observed to be up-regulated at 3300 m compared with 2300 m. These findings indicate that light intensity may play a regulatory role in enhancing flavonoid accumulation that allows S. hexandrum to adapt to elevated-altitude coupled with high light intensity.
Collapse
Affiliation(s)
- Qiaozhu Zhao
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Miaoyin Dong
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Mengfei Li
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
- State Key Laboratory of Arid Land Crop Science, Gansu Agricultural University, Lanzhou 730070, China
| | - Ling Jin
- College of Pharmacy, Gansu University of Chinese Medicine, Lanzhou 730101, China
| | - Paul W. Paré
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|