1
|
Zhu Y, Li L. Wood of trees: Cellular structure, molecular formation, and genetic engineering. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:443-467. [PMID: 38032010 DOI: 10.1111/jipb.13589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/28/2023] [Indexed: 12/01/2023]
Abstract
Wood is an invaluable asset to human society due to its renewable nature, making it suitable for both sustainable energy production and material manufacturing. Additionally, wood derived from forest trees plays a crucial role in sequestering a significant portion of the carbon dioxide fixed during photosynthesis by terrestrial plants. Nevertheless, with the expansion of the global population and ongoing industrialization, forest coverage has been substantially decreased, resulting in significant challenges for wood production and supply. Wood production practices have changed away from natural forests toward plantation forests. Thus, understanding the underlying genetic mechanisms of wood formation is the foundation for developing high-quality, fast-growing plantation trees. Breeding ideal forest trees for wood production using genetic technologies has attracted the interest of many. Tremendous studies have been carried out in recent years on the molecular, genetic, and cell-biological mechanisms of wood formation, and considerable progress and findings have been achieved. These studies and findings indicate enormous possibilities and prospects for tree improvement. This review will outline and assess the cellular and molecular mechanisms of wood formation, as well as studies on genetically improving forest trees, and address future development prospects.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems and College of Ecology, Lanzhou University, Lanzhou, 730000, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Ahlawat YK, Biswal AK, Harun S, Harman-Ware AE, Doeppke C, Sharma N, Joshi CP, Hankoua BB. Heterologous expression of Arabidopsis laccase2, laccase4 and peroxidase52 driven under developing xylem specific promoter DX15 improves saccharification in populus. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:5. [PMID: 38218877 PMCID: PMC10787383 DOI: 10.1186/s13068-023-02452-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/19/2023] [Indexed: 01/15/2024]
Abstract
BACKGROUND Secondary cell wall holds considerable potential as it has gained immense momentum to replace the lignocellulosic feedstock into fuels. Lignin one of the components of secondary cell wall tightly holds the polysaccharides thereby enhancing the recalcitrance and complexity in the biomass. Laccases (LAC) and peroxidases (PRX) are the major phenyl-oxidases playing key functions during the polymerization of monolignols into lignin. Yet, the functions of laccase and peroxidases gene families remained largely unknown. Hence, the objective of this conducted study is to understand the role of specific LAC and PRX in Populus wood formation and to further investigate how the altered Lac and Prx expression affects biomass recalcitrance and plant growth. This study of heterologous expression of Arabidopsis Lac and Prx genes was conducted in poplar to avoid any otherwise occurring co-suppression mechanism during the homologous overexpression of highly expressed native genes. In the pursuit of optimizing lignocellulosic biomass for biofuel production, the present study focuses on harnessing the enzymatic potential of Arabidopsis thaliana Laccase2, Laccase4, and Peroxidase52 through heterologous expression. RESULTS We overexpressed selected Arabidopsis laccase2 (AtLac2), laccase4 (AtLac4), and peroxidase52 (AtPrx52) genes, based on their high transcript expression respective to the differentiating xylem tissues in the stem, in hybrid poplar (cv. 717) expressed under the developing xylem tissue-specific promoter, DX15 characterized the transgenic populus for the investigation of growth phenotypes and recalcitrance efficiency. Bioinformatics analyses conducted on AtLac2 and AtLac4 and AtPrx52, revealed the evolutionary relationship between the laccase gene and peroxidase gene homologs, respectively. Transgenic poplar plant lines overexpressing the AtLac2 gene (AtLac2-OE) showed an increase in plant height without a change in biomass yield as compared to the controls; whereas, AtLac4-OE and AtPrx52-OE transgenic lines did not show any such observable growth phenotypes compared to their respective controls. The changes in the levels of lignin content and S/G ratios in the transgenic poplar resulted in a significant increase in the saccharification efficiency as compared to the control plants. CONCLUSIONS Overall, saccharification efficiency was increased by 35-50%, 21-42%, and 8-39% in AtLac2-OE, AtLac4-OE, and AtPrx52-OE transgenic poplar lines, respectively, as compared to their controls. Moreover, the bioengineered plants maintained normal growth and development, underscoring the feasibility of this approach for biomass improvement without compromising overall plant fitness. This study also sheds light on the potential of exploiting regulatory elements of DX15 to drive targeted expression of lignin-modifying enzymes, thereby providing a promising avenue for tailoring biomass for improved biofuel production. These findings contribute to the growing body of knowledge in synthetic biology and plant biotechnology, offering a sustainable solution to address the challenges associated with lignocellulosic biomass recalcitrance.
Collapse
Affiliation(s)
- Yogesh K Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA
| | - Ajaya K Biswal
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA30602, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA30602, USA
| | - Sarahani Harun
- Centre for Bioinformatics Research, Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, Malaysia
| | - Anne E Harman-Ware
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Crissa Doeppke
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Nisha Sharma
- Microbiology Section, Department of Basic Science, Dr. Y.S Parmar University of Horticulture and Forestry, Nauni, Solan, Himachal Pradesh, India
| | - Chandrashekhar P Joshi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI, 49931, USA.
| | - Bertrand B Hankoua
- Human Ecology Department, College of Agriculture, Science, and Technology (CAST), Food Science and Biotechnology Program, 1200 N. DuPont Highway, Dover, DE, 19901, USA.
| |
Collapse
|
3
|
Nookaraju A, Pandey SK, Ahlawat YK, Joshi CP. Understanding the Modus Operandi of Class II KNOX Transcription Factors in Secondary Cell Wall Biosynthesis. PLANTS (BASEL, SWITZERLAND) 2022; 11:493. [PMID: 35214825 PMCID: PMC8880547 DOI: 10.3390/plants11040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulosic biomass from the secondary cell walls of plants has a veritable potential to provide some of the most appropriate raw materials for producing second-generation biofuels. Therefore, we must first understand how plants synthesize these complex secondary cell walls that consist of cellulose, hemicellulose, and lignin in order to deconstruct them later on into simple sugars to produce bioethanol via fermentation. Knotted-like homeobox (KNOX) genes encode homeodomain-containing transcription factors (TFs) that modulate various important developmental processes in plants. While Class I KNOX TF genes are mainly expressed in the shoot apical meristems of both monocot and eudicot plants and are involved in meristem maintenance and/or formation, Class II KNOXTF genes exhibit diverse expression patterns and their precise functions have mostly remained unknown, until recently. The expression patterns of Class II KNOX TF genes in Arabidopsis, namely KNAT3, KNAT4, KNAT5, and KNAT7, suggest that TFs encoded by at least some of these genes, such as KNAT7 and KNAT3, may play a significant role in secondary cell wall formation. Specifically, the expression of the KNAT7 gene is regulated by upstream TFs, such as SND1 and MYB46, while KNAT7 interacts with other cell wall proteins, such as KNAT3, MYB75, OFPs, and BLHs, to regulate secondary cell wall formation. Moreover, KNAT7 directly regulates the expression of some xylan synthesis genes. In this review, we summarize the current mechanistic understanding of the roles of Class II KNOX TFs in secondary cell wall formation. Recent success with the genetic manipulation of Class II KNOX TFs suggests that this may be one of the biotechnological strategies to improve plant feedstocks for bioethanol production.
Collapse
Affiliation(s)
- Akula Nookaraju
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Kaveri Seed Company Limited, Secunderabad 500003, Telangana, India
| | - Shashank K. Pandey
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 87 Umeå, Sweden
| | - Yogesh K. Ahlawat
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
- Department of Horticultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Chandrashekhar P. Joshi
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA; (A.N.); (S.K.P.); (Y.K.A.)
| |
Collapse
|