1
|
Murray SC. Unlocking alleles from exotic wheat. NATURE PLANTS 2024; 10:1280-1281. [PMID: 39143236 DOI: 10.1038/s41477-024-01764-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Affiliation(s)
- Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
2
|
Rossi N, Powell W, Mackay IJ, Hickey L, Maurer A, Pillen K, Halliday K, Sharma R. Investigating the genetic control of plant development in spring barley under speed breeding conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:115. [PMID: 38691245 PMCID: PMC11063105 DOI: 10.1007/s00122-024-04618-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 04/08/2024] [Indexed: 05/03/2024]
Abstract
KEY MESSAGE This study found that the genes, PPD-H1 and ELF3, control the acceleration of plant development under speed breeding, with important implications for optimizing the delivery of climate-resilient crops. Speed breeding is a tool to accelerate breeding and research programmes. Despite its success and growing popularity with breeders, the genetic basis of plant development under speed breeding remains unknown. This study explored the developmental advancements of barley genotypes under different photoperiod regimes. A subset of the HEB-25 Nested Association Mapping population was evaluated for days to heading and maturity under two contrasting photoperiod conditions: (1) Speed breeding (SB) consisting of 22 h of light and 2 h of darkness, and (2) normal breeding (NB) consisting of 16 h of light and 8 h of darkness. GWAS revealed that developmental responses under both conditions were largely controlled by two loci: PPDH-1 and ELF3. Allelic variants at these genes determine whether plants display early flowering and maturity under both conditions. At key QTL regions, domesticated alleles were associated with late flowering and maturity in NB and early flowering and maturity in SB, whereas wild alleles were associated with early flowering under both conditions. We hypothesize that this is related to the dark-dependent repression of PPD-H1 by ELF3 which might be more prominent in NB conditions. Furthermore, by comparing development under two photoperiod regimes, we derived an estimate of plasticity for the two traits. Interestingly, plasticity in development was largely attributed to allelic variation at ELF3. Our results have important implications for our understanding and optimization of speed breeding protocols particularly for introgression breeding and the design of breeding programmes to support the delivery of climate-resilient crops.
Collapse
Affiliation(s)
- Nicola Rossi
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Wayne Powell
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Ian J Mackay
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lee Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| | - Andreas Maurer
- Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Klaus Pillen
- Chair of Plant Breeding, Martin-Luther-University Halle-Wittenberg, Betty-Heimann-Str. 3, 06120, Halle, Germany
| | - Karen Halliday
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Rajiv Sharma
- Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK.
| |
Collapse
|
3
|
Dwivedi SL, Chapman MA, Abberton MT, Akpojotor UL, Ortiz R. Exploiting genetic and genomic resources to enhance productivity and abiotic stress adaptation of underutilized pulses. Front Genet 2023; 14:1193780. [PMID: 37396035 PMCID: PMC10311922 DOI: 10.3389/fgene.2023.1193780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/07/2023] [Indexed: 07/04/2023] Open
Abstract
Underutilized pulses and their wild relatives are typically stress tolerant and their seeds are packed with protein, fibers, minerals, vitamins, and phytochemicals. The consumption of such nutritionally dense legumes together with cereal-based food may promote global food and nutritional security. However, such species are deficient in a few or several desirable domestication traits thereby reducing their agronomic value, requiring further genetic enhancement for developing productive, nutritionally dense, and climate resilient cultivars. This review article considers 13 underutilized pulses and focuses on their germplasm holdings, diversity, crop-wild-crop gene flow, genome sequencing, syntenic relationships, the potential for breeding and transgenic manipulation, and the genetics of agronomic and stress tolerance traits. Recent progress has shown the potential for crop improvement and food security, for example, the genetic basis of stem determinacy and fragrance in moth bean and rice bean, multiple abiotic stress tolerant traits in horse gram and tepary bean, bruchid resistance in lima bean, low neurotoxin in grass pea, and photoperiod induced flowering and anthocyanin accumulation in adzuki bean have been investigated. Advances in introgression breeding to develop elite genetic stocks of grass pea with low β-ODAP (neurotoxin compound), resistance to Mungbean yellow mosaic India virus in black gram using rice bean, and abiotic stress adaptation in common bean, using genes from tepary bean have been carried out. This highlights their potential in wider breeding programs to introduce such traits in locally adapted cultivars. The potential of de-domestication or feralization in the evolution of new variants in these crops are also highlighted.
Collapse
Affiliation(s)
| | - Mark A. Chapman
- Biological Sciences, University of Southampton, Southampton, United Kingdom
| | | | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
4
|
Rajpal VR, Singh A, Kathpalia R, Thakur RK, Khan MK, Pandey A, Hamurcu M, Raina SN. The Prospects of gene introgression from crop wild relatives into cultivated lentil for climate change mitigation. FRONTIERS IN PLANT SCIENCE 2023; 14:1127239. [PMID: 36998696 PMCID: PMC10044020 DOI: 10.3389/fpls.2023.1127239] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/22/2023] [Indexed: 05/31/2023]
Abstract
Crop wild relatives (CWRs), landraces and exotic germplasm are important sources of genetic variability, alien alleles, and useful crop traits that can help mitigate a plethora of abiotic and biotic stresses and crop yield reduction arising due to global climatic changes. In the pulse crop genus Lens, the cultivated varieties have a narrow genetic base due to recurrent selections, genetic bottleneck and linkage drag. The collection and characterization of wild Lens germplasm resources have offered new avenues for the genetic improvement and development of stress-tolerant, climate-resilient lentil varieties with sustainable yield gains to meet future food and nutritional requirements. Most of the lentil breeding traits such as high-yield, adaptation to abiotic stresses and resistance to diseases are quantitative and require the identification of quantitative trait loci (QTLs) for marker assisted selection and breeding. Advances in genetic diversity studies, genome mapping and advanced high-throughput sequencing technologies have helped identify many stress-responsive adaptive genes, quantitative trait loci (QTLs) and other useful crop traits in the CWRs. The recent integration of genomics technologies with plant breeding has resulted in the generation of dense genomic linkage maps, massive global genotyping, large transcriptomic datasets, single nucleotide polymorphisms (SNPs), expressed sequence tags (ESTs) that have advanced lentil genomic research substantially and allowed for the identification of QTLs for marker-assisted selection (MAS) and breeding. Assembly of lentil and its wild species genomes (~4Gbp) opens up newer possibilities for understanding genomic architecture and evolution of this important legume crop. This review highlights the recent strides in the characterization of wild genetic resources for useful alleles, development of high-density genetic maps, high-resolution QTL mapping, genome-wide studies, MAS, genomic selections, new databases and genome assemblies in traditionally bred genus Lens for future crop improvement amidst the impending global climate change.
Collapse
Affiliation(s)
- Vijay Rani Rajpal
- Department of Botany, Hansraj College, University of Delhi, Delhi, India
| | - Apekshita Singh
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Renu Kathpalia
- Department of Botany, Kirori Mal College, University of Delhi, Delhi, India
| | - Rakesh Kr. Thakur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| | - Mohd. Kamran Khan
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Anamika Pandey
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Mehmet Hamurcu
- Department of Soil Science and Plant Nutrition, Faculty of Agriculture, Selcuk University, Konya, Türkiye
| | - Soom Nath Raina
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Sector 125, Noida, U.P., India
| |
Collapse
|
5
|
Seyum EG, Bille NH, Abtew WG, Munyengwa N, Bell JM, Cros D. Genomic selection in tropical perennial crops and plantation trees: a review. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:58. [PMID: 37313015 PMCID: PMC10248687 DOI: 10.1007/s11032-022-01326-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
To overcome the multiple challenges currently faced by agriculture, such as climate change and soil deterioration, more efficient plant breeding strategies are required. Genomic selection (GS) is crucial for the genetic improvement of quantitative traits, as it can increase selection intensity, shorten the generation interval, and improve selection accuracy for traits that are difficult to phenotype. Tropical perennial crops and plantation trees are of major economic importance and have consequently been the subject of many GS articles. In this review, we discuss the factors that affect GS accuracy (statistical models, linkage disequilibrium, information concerning markers, relatedness between training and target populations, the size of the training population, and trait heritability) and the genetic gain expected in these species. The impact of GS will be particularly strong in tropical perennial crops and plantation trees as they have long breeding cycles and constrained selection intensity. Future GS prospects are also discussed. High-throughput phenotyping will allow constructing of large training populations and implementing of phenomic selection. Optimized modeling is needed for longitudinal traits and multi-environment trials. The use of multi-omics, haploblocks, and structural variants will enable going beyond single-locus genotype data. Innovative statistical approaches, like artificial neural networks, are expected to efficiently handle the increasing amounts of heterogeneous multi-scale data. Targeted recombinations on sites identified from profiles of marker effects have the potential to further increase genetic gain. GS can also aid re-domestication and introgression breeding. Finally, GS consortia will play an important role in making the best of these opportunities. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-022-01326-4.
Collapse
Affiliation(s)
- Essubalew Getachew Seyum
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Ngalle Hermine Bille
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Wosene Gebreselassie Abtew
- Department of Horticulture and Plant Sciences, College of Agriculture and Veterinary Medicine, Jimma University, P.O. Box 307, Jimma, Ethiopia
| | - Norman Munyengwa
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane, QLD 4072 Australia
| | - Joseph Martin Bell
- Department of Plant Biology and Physiology, Faculty of Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - David Cros
- CIRAD, UMR AGAP Institut, 34398 Montpellier, France
- UMR AGAP Institut, CIRAD, INRAE, Univ. Montpellier, Institut Agro, 34398 Montpellier, France
| |
Collapse
|