1
|
Ben-Amar A, Allel D, Bouamama-Gzara B. Osmotic priming-induced cryotolerance uncovers rejuvenation of grapevine cell cultures: morphogenetic changes and gene expression pattern highlighting enhanced embryogenic potential. PROTOPLASMA 2024; 261:1251-1266. [PMID: 38980351 DOI: 10.1007/s00709-024-01968-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/25/2024] [Indexed: 07/10/2024]
Abstract
Cryopreservation is a reliable technique for the long-term storage and preservation of embryogenic cells, maintaining their viability without loss of their embryogenic capacity. However, the large-scale conservation of grapevine embryogenic lines in cryobanks remains limited. A significant challenge is understanding somatic cell rejuvenation. Here, we investigate the encapsulation/dehydration and encapsulation/vitrification for cryopreserving embryogenic material. Cell rejuvenation and enhanced embryogenic competence were observed after cryopreservation, as evidenced through structural cellular changes observed by histology and electron scanning microscopy. Results showed that cryopreserved samples of 110-Richter, Riesling, and Tempranillo using encapsulation/dehydration had better survival rates, averaging 81%, 62%, and 48%, respectively, while encapsulation/vitrification yielded lower survival rates, averaging 58%, 42%, and 32%, respectively. Cryopreservation also improved post-thaw recovery and regeneration efficiency assessed through regrowth of proembryogenic masses and somatic embryo conversion reaching 54-72% against 11-17% in control samples. Cryopreservation triggered changes in gene expression patterns and exhibited considerable increase at genotype-specific basis of 1.5- to 4.5-fold in SERK1, BBM, and WOX associated to embryogenic competence as well as in ChitIV and LEA involved in stress response. Membrane stability index, hydrogen peroxide, and proline contents were used as indicators of oxidative stress uncovering a key role of an osmotic trans-priming effect leading to cryotolerance. Our finding highlighted that cryopreservation enhances embryogenic capacity in senescent callus and probably acts as a screening process allowing safe maintenance of proembryogenic cells and promoting their recovery. This study provides a high throughput innovation to set up cryolines for cell rejuvenation of grapevine and other important plant species.
Collapse
Affiliation(s)
- Anis Ben-Amar
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia.
| | - Dorsaf Allel
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| | - Badra Bouamama-Gzara
- Department of Plant Molecular Physiology, Centre of Biotechnology of Borj Cedria, Science and Technology Park, P.O. Box. 901, 2050, Hammam-Lif, Tunisia
| |
Collapse
|
2
|
Xie J, He C, Li Z, Li M, He S, Qian J, Tan B, Zheng X, Cheng J, Wang W, Li J, Feng J, Ye X. A rapid and efficient Agrobacterium-mediated transient transformation system in grape berries. PROTOPLASMA 2024; 261:819-830. [PMID: 38418654 DOI: 10.1007/s00709-024-01938-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
Transient transformation is extremely useful for rapid in vivo assessment of gene function, especially for fruit-related genes. Grape berry, while an important fruit crop, is recalcitrant to transient transformation, due to the high turgor pressure in its mesocarp cells that limits the ability of Agrobacterium to penetrate into the tissue. It is urgent to establish a simple transient transformation system for rapid analysis of gene function. In this study, different injection methods, grape genotypes, and developmental stages were tested in order to develop a rapid and efficient Agrobacterium-mediated transient transformation methodology for grape berries. Two injection methods, namely punch injection and direct injection, were evaluated using the β-glucuronidase (GUS) gene and by x-gluc tissue staining and 4-methylumbelliferyl-β-D-glucuronide fluorescence analysis. The results indicated that there were no significant differences on transformation effects between the two methods, but the latter was more suitable because of its simplicity and convenience. Six grape cultivars ('Hanxiangmi', 'Moldova', 'Zijixin', 'Jumeigui', 'Shine-Muscat', and 'A17') were tested for transient transformation. 'Hanxiangmi', 'Moldova', and 'Zijixin' grape berries were not suitable for agroinfiltration due to frequently fruit cracking, browning, and formation of scar skin. The fruit integrity rates of 'Jumeigui', 'Shine-Muscat', and 'A17' berries were all above 80%, and GUS activity was detected in the berries of the three cultivars 3-14 days after injection with the Agrobacterium culture, while higher GUS activities were observed in the 'Jumeigui' berries. The levels of GUS activity in injected berries at 7-8 weeks after full blooming (WAFB) were more than twice at 6 WAFB. In subsequent assays, the over-expression of MYB transcription factor VvMYB44 via transient transformation accelerated the anthocyanin accumulation and fruit coloring through raising the expression levels of VvLAR1, VvUFGT, VvLDOX, VvANS, and VvDFR, which verified the effectiveness of this transformation system. These experiments finally identified the reliable grape cultivars and suitable operational approach for transient transformation and further indicated that this Agrobacterium-mediated transient transformation system was efficient and suitable for the elucidation of gene function in grape berries.
Collapse
Affiliation(s)
- Jiannan Xie
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Chang He
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Zhiqian Li
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Meng Li
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Shanshan He
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jiakang Qian
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Bin Tan
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Xianbo Zheng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jun Cheng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Wei Wang
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jidong Li
- College of Forestry, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China
| | - Jiancan Feng
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China.
| | - Xia Ye
- College of Horticulture, Henan Agricultural University, Henan Province, Zhengzhou, 450002, People's Republic of China.
- International Joint Laboratory of Henan Horticultural Crop Biology, Henan Province, Zhengzhou, 450002, People's Republic of China.
| |
Collapse
|
3
|
Ritter EJ, Cousins P, Quigley M, Kile A, Kenchanmane Raju SK, Chitwood DH, Niederhuth C. From buds to shoots: insights into grapevine development from the Witch's Broom bud sport. BMC PLANT BIOLOGY 2024; 24:283. [PMID: 38627633 PMCID: PMC11020879 DOI: 10.1186/s12870-024-04992-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Bud sports occur spontaneously in plants when new growth exhibits a distinct phenotype from the rest of the parent plant. The Witch's Broom bud sport occurs occasionally in various grapevine (Vitis vinifera) varieties and displays a suite of developmental defects, including dwarf features and reduced fertility. While it is highly detrimental for grapevine growers, it also serves as a useful tool for studying grapevine development. We used the Witch's Broom bud sport in grapevine to understand the developmental trajectories of the bud sports, as well as the potential genetic basis. We analyzed the phenotypes of two independent cases of the Witch's Broom bud sport, in the Dakapo and Merlot varieties of grapevine, alongside wild type counterparts. To do so, we quantified various shoot traits, performed 3D X-ray Computed Tomography on dormant buds, and landmarked leaves from the samples. We also performed Illumina and Oxford Nanopore sequencing on the samples and called genetic variants using these sequencing datasets. RESULTS The Dakapo and Merlot cases of Witch's Broom displayed severe developmental defects, with no fruit/clusters formed and dwarf vegetative features. However, the Dakapo and Merlot cases of Witch's Broom studied were also phenotypically different from one another, with distinct differences in bud and leaf development. We identified 968-974 unique genetic mutations in our two Witch's Broom cases that are potential causal variants of the bud sports. Examining gene function and validating these genetic candidates through PCR and Sanger-sequencing revealed one strong candidate mutation in Merlot Witch's Broom impacting the gene GSVIVG01008260001. CONCLUSIONS The Witch's Broom bud sports in both varieties studied had dwarf phenotypes, but the two instances studied were also vastly different from one another and likely have distinct genetic bases. Future work on Witch's Broom bud sports in grapevine could provide more insight into development and the genetic pathways involved in grapevine.
Collapse
Affiliation(s)
- Eleanore J Ritter
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | | | - Michelle Quigley
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Center for Quantitative Imaging, Institute of Energy and the Environment, Penn State University, State College, PA, USA
| | - Aidan Kile
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| | - Sunil K Kenchanmane Raju
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Center for Genomics and Systems Biology, New York University, Manhattan, NY, USA
| | - Daniel H Chitwood
- Department of Horticulture, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science & Engineering, Michigan State University, East Lansing, MI, USA
| | - Chad Niederhuth
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA.
- Corteva, Inc. Indianapolis, IN, USA.
| |
Collapse
|
4
|
Pathirana R, Carimi F. Studies on Improving the Efficiency of Somatic Embryogenesis in Grapevine ( Vitis vinifera L.) and Optimising Ethyl Methanesulfonate Treatment for Mutation Induction. PLANTS (BASEL, SWITZERLAND) 2023; 12:4126. [PMID: 38140453 PMCID: PMC10748286 DOI: 10.3390/plants12244126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023]
Abstract
Somatic embryogenesis (SE) has many applications in grapevine biotechnology including micropropagation, eradicating viral infections from infected cultivars, mass production of hypocotyl explants for micrografting, as a continuous source for haploid and doubled haploid plants, and for germplasm conservation. It is so far the only pathway for the genetic modification of grapevines through transformation. The single-cell origin of somatic embryos makes them an ideal explant for mutation breeding as the resulting mutants will be chimera-free. In the present research, two combinations of plant growth regulators and different explants from flower buds at two stages of maturity were tested in regard to the efficiency of callusing and embryo formation from the callus produced in three white grape cultivars. Also, the treatment of somatic embryos with the chemical mutagen ethyl methanesulfonate (EMS) was optimised. Medium 2339 supplemented with β-naphthoxyacetic acid (5 μM) and 6-benzylaminopurine (BAP-9.0 μM) produced significantly more calluses than medium 2337 supplemented with 2,4-dichlorophenoxyacetic acid (4.5 µM) and BAP (8.9 µM) in all explants. The calluses produced on medium 2337 were harder and more granular and produced more SEs. Although the stage of the maturity of floral bud did not have a significant effect on the callusing of the explants, calluses produced from immature floral bud explants in the premeiotic stage produced significantly more SEs than those from more mature floral buds. Overall, immature ovaries and cut floral buds exposing the cut ends of filaments, style, etc., tested for the first time in grapevine SE, produced the highest percentage of embryogenic calluses. It is much more efficient to cut the floral bud and culture than previously reported explants such as anthers, ovaries, stigmas and styles during the short flowering period when the immature flower buds are available. When the somatic embryos of the three cultivars were incubated for one hour with 0.1% EMS, their germination was reduced by 50%; an ideal treatment considered to obtain a high frequency of mutations for screening. Our research findings will facilitate more efficient SE induction in grapevines and inducing mutations for improving individual traits without altering the genetic background of the cultivar.
Collapse
Affiliation(s)
- Ranjith Pathirana
- The New Zealand Institute for Plant and Food Research Limited, Batchelar Road, Palmerston North 4472, New Zealand
| | - Francesco Carimi
- Istituto di Bioscienze e BioRisorse (IBBR), Consiglio Nazionale delle Ricerche, Via Ugo la Malfa, 153, 90146 Palermo, Italy;
| |
Collapse
|
5
|
Magon G, De Rosa V, Martina M, Falchi R, Acquadro A, Barcaccia G, Portis E, Vannozzi A, De Paoli E. Boosting grapevine breeding for climate-smart viticulture: from genetic resources to predictive genomics. FRONTIERS IN PLANT SCIENCE 2023; 14:1293186. [PMID: 38148866 PMCID: PMC10750425 DOI: 10.3389/fpls.2023.1293186] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023]
Abstract
The multifaceted nature of climate change is increasing the urgency to select resilient grapevine varieties, or generate new, fitter cultivars, to withstand a multitude of new challenging conditions. The attainment of this goal is hindered by the limiting pace of traditional breeding approaches, which require decades to result in new selections. On the other hand, marker-assisted breeding has proved useful when it comes to traits governed by one or few genes with great effects on the phenotype, but its efficacy is still restricted for complex traits controlled by many loci. On these premises, innovative strategies are emerging which could help guide selection, taking advantage of the genetic diversity within the Vitis genus in its entirety. Multiple germplasm collections are also available as a source of genetic material for the introgression of alleles of interest via adapted and pioneering transformation protocols, which present themselves as promising tools for future applications on a notably recalcitrant species such as grapevine. Genome editing intersects both these strategies, not only by being an alternative to obtain focused changes in a relatively rapid way, but also by supporting a fine-tuning of new genotypes developed with other methods. A review on the state of the art concerning the available genetic resources and the possibilities of use of innovative techniques in aid of selection is presented here to support the production of climate-smart grapevine genotypes.
Collapse
Affiliation(s)
- Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Rachele Falchi
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Largo P. Braccini 2, Grugliasco, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padova, Agripolis, Viale dell’Università 16, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Via delle Scienze, 206, Udine, Italy
| |
Collapse
|
6
|
Spencer KP, Burger JT, Campa M. CRISPR-based resistance to grapevine virus A. FRONTIERS IN PLANT SCIENCE 2023; 14:1296251. [PMID: 38111883 PMCID: PMC10725905 DOI: 10.3389/fpls.2023.1296251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/20/2023] [Indexed: 12/20/2023]
Abstract
Introduction Grapevine (Vitis vinifera) is an important fruit crop which contributes significantly to the agricultural sector worldwide. Grapevine viruses are widespread and cause serious diseases which impact the quality and quantity of crop yields. More than 80 viruses plague grapevine, with RNA viruses constituting the largest of these. A recent extension to the clustered regularly interspaced, short palindromic repeat (CRISPR) armory is the Cas13 effector, which exclusively targets single-strand RNA. CRISPR/Cas has been implemented as a defense mechanism in plants, against both DNA and RNA viruses, by being programmed to directly target and cleave the viral genomes. The efficacy of the CRISPR/Cas tool in plants is dependent on efficient delivery of its components into plant cells. Methods To this end, the aim of this study was to use the recent Cas13d variant from Ruminococcus flavefaciens (CasRx) to target the RNA virus, grapevine virus A (GVA). GVA naturally infects grapevine, but can infect the model plant Nicotiana benthamiana, making it a helpful model to study virus infection in grapevine. gRNAs were designed against the coat protein (CP) gene of GVA. N. benthamiana plants expressing CasRx were co-infiltrated with GVA, and with a tobacco rattle virus (TRV)-gRNA expression vector, harbouring a CP gRNA. Results and discussion Results indicated more consistent GVA reductions, specifically gRNA CP-T2, which demonstrated a significant negative correlation with GVA accumulation, as well as multiple gRNA co-infiltrations which similarly showed reduced GVA titre. By establishing a virus-targeting defense system in plants, efficient virus interference mechanisms can be established and applied to major crops, such as grapevine.
Collapse
Affiliation(s)
| | | | - Manuela Campa
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
7
|
Martín-Valmaseda M, Devin SR, Ortuño-Hernández G, Pérez-Caselles C, Mahdavi SME, Bujdoso G, Salazar JA, Martínez-Gómez P, Alburquerque N. CRISPR/Cas as a Genome-Editing Technique in Fruit Tree Breeding. Int J Mol Sci 2023; 24:16656. [PMID: 38068981 PMCID: PMC10705926 DOI: 10.3390/ijms242316656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 11/20/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
CRISPR (short for "Clustered Regularly Interspaced Short Palindromic Repeats") is a technology that research scientists use to selectively modify the DNA of living organisms. CRISPR was adapted for use in the laboratory from the naturally occurring genome-editing systems found in bacteria. In this work, we reviewed the methods used to introduce CRISPR/Cas-mediated genome editing into fruit species, as well as the impacts of the application of this technology to activate and knock out target genes in different fruit tree species, including on tree development, yield, fruit quality, and tolerance to biotic and abiotic stresses. The application of this gene-editing technology could allow the development of new generations of fruit crops with improved traits by targeting different genetic segments or even could facilitate the introduction of traits into elite cultivars without changing other traits. However, currently, the scarcity of efficient regeneration and transformation protocols in some species, the fact that many of those procedures are genotype-dependent, and the convenience of segregating the transgenic parts of the CRISPR system represent the main handicaps limiting the potential of genetic editing techniques for fruit trees. Finally, the latest news on the legislation and regulations about the use of plants modified using CRISPR/Cas systems has been also discussed.
Collapse
Affiliation(s)
- Marina Martín-Valmaseda
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sama Rahimi Devin
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Germán Ortuño-Hernández
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Cristian Pérez-Caselles
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| | - Sayyed Mohammad Ehsan Mahdavi
- Department of Horticultural Science, College of Agriculture, Shiraz University, Shiraz 7144165186, Iran; (S.R.D.); (S.M.E.M.)
| | - Geza Bujdoso
- Research Centre for Fruit Growing, Hungarian University of Agriculture and Life Sciences, 1223 Budapest, Hungary;
| | - Juan Alfonso Salazar
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Pedro Martínez-Gómez
- Fruit Breeding Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain; (G.O.-H.); (J.A.S.)
| | - Nuria Alburquerque
- Fruit Biotechnology Group, Department of Plant Breeding, CEBAS-CSIC (Centro de Edafología y Biología Aplicada del Segura-Consejo Superior de Investigaciones Científicas), Campus Universitario Espinardo, E-30100 Murcia, Spain (C.P.-C.); (N.A.)
| |
Collapse
|
8
|
Perotti MF, Posé D, Martín-Pizarro C. Non-climacteric fruit development and ripening regulation: 'the phytohormones show'. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6237-6253. [PMID: 37449770 PMCID: PMC10627154 DOI: 10.1093/jxb/erad271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Fruit ripening involves numerous physiological, structural, and metabolic changes that result in the formation of edible fruits. This process is controlled at different molecular levels, with essential roles for phytohormones, transcription factors, and epigenetic modifications. Fleshy fruits are classified as either climacteric or non-climacteric species. Climacteric fruits are characterized by a burst in respiration and ethylene production at the onset of ripening, while regulation of non-climacteric fruit ripening has been commonly attributed to abscisic acid (ABA). However, there is controversy as to whether mechanisms regulating fruit ripening are shared between non-climacteric species, and to what extent other hormones contribute alongside ABA. In this review, we summarize classic and recent studies on the accumulation profile and role of ABA and other important hormones in the regulation of non-climacteric fruit development and ripening, as well as their crosstalk, paying special attention to the two main non-climacteric plant models, strawberry and grape. We highlight both the common and different roles of these regulators in these two crops, and discuss the importance of the transcriptional and environmental regulation of fruit ripening, as well as the need to optimize genetic transformation methodologies to facilitate gene functional analyses.
Collapse
Affiliation(s)
- María Florencia Perotti
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - David Posé
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| | - Carmen Martín-Pizarro
- Departamento de Mejora Genética y Biotecnología, Instituto de Hortofruticultura Subtropical y Mediterránea ‘La Mayora’ (IHSM), Universidad de Málaga - Consejo Superior de Investigaciones Científicas, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, UMA, Málaga, Spain
| |
Collapse
|
9
|
Pei MS, Liu HN, Ampomah-Dwamena C, Wei TL, Yu YH, Jiao JB, Lv YY, Li F, Li HC, Zhu XJ, Guo DL. A simple and efficient protocol for transient transformation of sliced grape berries. PROTOPLASMA 2023; 260:757-766. [PMID: 36089607 DOI: 10.1007/s00709-022-01810-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 06/15/2023]
Abstract
Grape is an economically important crop but recalcitrant to Agrobacterium-mediated genetic transformation and in vitro regeneration. Here, we have developed a protocol for transient transformation of grapes by investigating the effects of explant pre-culture and duration of vacuum infiltration on transformation efficiency. Using sliced grape berries of "Shine-Muscat" (Vitis labrusca × Vitis vinifera) between the end of fruit expansion phase and the mature stage as explants, we firstly compared the effect of pre-culture explants into a susceptible state (incubation on Murashige and Skoog (MS) agar plate in the dark at 25 ± 1 °C for 48 h) with no pre-culture and then tested different vacuum infiltration times on transformation efficiency using β-glucuronidase (GUS) reporter system. Pre-culture increased the susceptibility of explants to the agrobacteria infection and increased transient transformation efficiency as assessed by histochemical GUS activity, with intense blue coloration compared with the faint staining observed in the non-susceptible explants. Using a Circulating Water Vacuum Pump system to facilitate agrobacteria entry into berry cells, we tested vacuum durations of 5, 10, and 15 min and observed that transformation efficiency increased with vacuum duration of infiltration. These results were confirmed by relative gene expression of GUS transgene as assessed by RT-qPCR and GUS activity assay. To further confirm the usefulness of our protocol, we transiently transformed grape berries with the hydrogen peroxide sensor gene VvHPCA3, and this was confirmed by gene expression analysis as well as increased sensitivity of the explants to hydrogen peroxide treatment. Overall, this study has resulted in a simple but efficient transient transformation protocol for grape berries and would be a valuable tool for the rapid testing of gene function and the study of key regulatory networks in this important crop.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | | | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | - Yi-He Yu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | - Jia-Bing Jiao
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | - Ying-Ying Lv
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China
| | - Feng Li
- Yanqing District Fruit Industry Service Station, Beijing, People's Republic of China
| | - Hong-Chao Li
- Forestry Development Centre of Xiangfu District, Kaifeng, People's Republic of China
| | - Xue-Jie Zhu
- Nong Fa Agricultural Science and Technology Company Limited, Luoyang, People's Republic of China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, Henan Province, People's Republic of China.
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang, 471023, People's Republic of China.
| |
Collapse
|
10
|
Induction, Flavonoids Contents, and Bioactivities Analysis of Hairy Roots and True Roots of Tetrastigma hemsleyanum Diels et Gilg. Molecules 2023; 28:molecules28062686. [PMID: 36985658 PMCID: PMC10053805 DOI: 10.3390/molecules28062686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
The flavonoids in Tetrastigma hemsleyanum Diels et Gilg (T. hemsleyanum) have high medicinal value. However, because of slow growth and harsh ecological environments, T. hemsleyanum is currently an endangered species. In light of this, we present a detailed hairy root induction procedure as a promising alternative to true roots with medicinal value. The percentage of explants induced by Agrobacterium rhizogenes (A. rhizogenes) to produce hairy roots out of the total number of explants infected (induction rate 1) was 95.83 ± 7.22%, and the proportion of hairy roots that contained Rol B fragments among all the hairy roots with or without Rol B fragments (positive rate) was 96.57 ± 1.72%. The transformation was further confirmed by the expression of the GUS protein. A high-productive hairy root line was screened for the comparative profiling of six flavonoids with true roots using high-performance liquid chromatography (HPLC). The contents of (+)-catechin, (−)-epicatechin, neochlorogenic acid, luteolin-6-C-glucoside, and orientin were 692.63 ± 127.24, 163.34 ± 31.86, 45.95 ± 3.46, 209.68 ± 6.03, and 56.82 ± 4.75 μg/g dry weight (DW) of 30-day-old hairy roots, respectively, which were higher than those of 3-year-old true roots. Hairy roots have stronger antioxidant activity than true roots. Overall, the hairy roots of T. hemsleyanum could serve as promising alternative sources for the production of flavonoids with medicinal uses.
Collapse
|
11
|
Nuzzo F, Gambino G, Perrone I. Unlocking grapevine in vitro regeneration: Issues and perspectives for genetic improvement and functional genomic studies. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 193:99-109. [PMID: 36343465 DOI: 10.1016/j.plaphy.2022.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 06/16/2023]
Abstract
In vitro plant regeneration is a pivotal process in genetic engineering to obtain large numbers of transgenic, cisgenic and gene edited plants in the frame of functional gene or genetic improvement studies. However, several issues emerge as regeneration is not universally possible across the plant kingdom and many variables must be considered. In grapevine (Vitis spp.), as in other woody and fruit tree species, the regeneration process is impaired by a recalcitrance that depends on numerous factors such as genotype and explant-dependent responses. This is one of the major obstacles in developing gene editing approaches and functional genome studies in grapevine and it is therefore crucial to understand how to achieve efficient regeneration across different genotypes. Further issues that emerge in regeneration need to be addressed, such as somaclonal mutations which do not allow the regeneration of individuals identical to the original mother plant, an essential factor for commercial use of the improved grapevines obtained through the New Breeding Techniques. Over the years, the evolution of protocols to achieve plant regeneration has relied mainly on optimizing protocols for genotypes of interest whilst nowadays with new genomic data available there is an emerging opportunity to have a clearer picture of its molecular regulation. The goal of this review is to discuss the latest information available about different aspects of grapevine in vitro regeneration, to address the main factors that can impair the efficiency of the plant regeneration process and cause post-regeneration problems and to propose strategies for investigating and solving them.
Collapse
Affiliation(s)
- Floriana Nuzzo
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy.
| | - Irene Perrone
- Institute for Sustainable Plant Protection, National Research Council of Italy (IPSP-CNR), Strada Delle Cacce 73, 10135, Torino, Italy
| |
Collapse
|
12
|
Zlenko V, Kosyuk M, Pavlova I, Luschay E, Abdurashitova A. Features of somatic embryogenesis in the culture in vitro in hybrid grape form E-342. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20225302004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Correlation analysis of the influence of media variants with introducing various biologically active substances on the development of somatic embryoids and germinating seedlings in the hybrid form E-342 was carried out during two repeated subculturings on the same variant of media, and during the third subculturing - on different variants of media. The repeated subculturing in media with the same growth regulator BAP or IAA caused the development of abnormal large somatic embryoids without the expressed hypocotyls and cotyledons. Only the use of medium variant with DLPA in two subculturings (the third subculturing into the medium with BAP or IAA) and the third repeated subculturing with DLPA, but to a smaller extent, have led to the development of torpedo-shaped embryoids, to be growing into germinating seedlings. Strong positive correlation dependence of influence was established for: BAP on the development of heart-shaped embryoids; IAA on the increase in the size of globular embryoids and transformation of heart-shaped embryoids into torpedo-shaped ones; DLPA on the development of a great number of normal torpedo-shaped embryoids. After longstanding culturing of suspensions of cells and embryoids, it was not possible to get rid of chlorophyll deficiency in the resulting germinating seedlings due to somaclonal variability.
Collapse
|