1
|
Sun HY, Zhang WP, Zhou W, Wu ZK, Zheng LP. Development of polymorphic microsatellite markers for distylous-homostylous Primula secundiflora (Primulaceae) using HiSeq sequencing. Genes Genet Syst 2024; 99:n/a. [PMID: 38556272 DOI: 10.1266/ggs.23-00340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024] Open
Abstract
Primula secundiflora is an insect-pollinated, perennial herb belonging to the section Proliferae (Primulaceae) that exhibits considerable variation in its mating system, with predominantly outcrossing populations comprising long-styled and short-styled floral morphs and selfing populations comprising only homostyles. To facilitate future investigations of the population genetics and mating patterns of this species, we developed 25 microsatellite markers from P. secundiflora using next-generation sequencing and measured polymorphism and genetic diversity in a sample of 30 individuals from three natural populations. The markers displayed high polymorphism, with the number of observed alleles per locus ranging from three to 16 (mean = 8.36). The observed and expected heterozygosities ranged from 0.100 to 1.000 and 0.145 to 0.843, respectively. Twenty-one of the loci were also successfully amplified in P. denticulata. These microsatellite markers should provide powerful tools for investigating patterns of population genetic diversity and the evolutionary relationships between distyly and homostyly in P. secundiflora.
Collapse
Affiliation(s)
- Hua-Ying Sun
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine
- Germplasm Bank of Wild Species and Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences
- Key Laboratory of Yunnan Provincial Department of Education for Processing Research on Characteristic Prepared Drug in Pieces
| | - Wen-Ping Zhang
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine
| | - Wei Zhou
- Germplasm Bank of Wild Species and Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine
| | - Lan-Ping Zheng
- College of Chinese Materia Medica, Yunnan University of Chinese Medicine
| |
Collapse
|
2
|
Zeng ZH, Zhong L, Sun HY, Wu ZK, Wang X, Wang H, Li DZ, Barrett SCH, Zhou W. Parallel evolution of morphological and genomic selfing syndromes accompany the breakdown of heterostyly. THE NEW PHYTOLOGIST 2024; 242:302-316. [PMID: 38214455 DOI: 10.1111/nph.19522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/18/2023] [Indexed: 01/13/2024]
Abstract
Evolutionary transitions from outcrossing to selfing in flowering plants have convergent morphological and genomic signatures and can involve parallel evolution within related lineages. Adaptive evolution of morphological traits is often assumed to evolve faster than nonadaptive features of the genomic selfing syndrome. We investigated phenotypic and genomic changes associated with transitions from distyly to homostyly in the Primula oreodoxa complex. We determined whether the transition to selfing occurred more than once and investigated stages in the evolution of morphological and genomic selfing syndromes using 22 floral traits and both nuclear and plastid genomic data from 25 populations. Two independent transitions were detected representing an earlier and a more recently derived selfing lineage. The older lineage exhibited classic features of the morphological and genomic selfing syndrome. Although features of both selfing syndromes were less developed in the younger selfing lineage, they exhibited parallel development with the older selfing lineage. This finding contrasts with the prediction that some genomic changes should lag behind adaptive changes to morphological traits. Our findings highlight the value of comparative studies on the timing and extent of transitions from outcrossing to selfing between related lineages for investigating the tempo of morphological and molecular evolution.
Collapse
Affiliation(s)
- Zhi-Hua Zeng
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li Zhong
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hua-Ying Sun
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming, Yunnan, 650500, China
| | - Zhi-Kun Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550002, China
| | - Xin Wang
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Hong Wang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - De-Zhu Li
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
| | - Spencer C H Barrett
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON, M5S 3B2, Canada
| | - Wei Zhou
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, 650201, China
- Lijiang Forest Biodiversity National Observation and Research Station, Kunming Institute of Botany, Chinese Academy of Sciences, Lijiang, Yunnan, 674100, China
| |
Collapse
|
3
|
Ren D, Jiao F, Zhang A, Zhao J, Zhang J. Floral morph variation mediated by clonal growth and pollinator functional groups of Limonium otolepis in a heterostylous fragmented population. AOB PLANTS 2024; 16:plae020. [PMID: 38660050 PMCID: PMC11041057 DOI: 10.1093/aobpla/plae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Abstract. Heterostyly, a genetic style polymorphism, is linked to symmetric pollen transfer, vital for its maintenance. Clonal growth typically impacts sexual reproduction by influencing pollen transfer. However, the floral morph variation remains poorly understood under the combined effects of pollinators and clonal growth in heterostyly characterized by negative frequency-dependent selection and disassortative mating. We estimated morph ratios, ramets per genet and heterostylous syndrome and quantified legitimate pollen transfer via clonal growth, pollinators and reciprocal herkogamy between floral morphs in Limonium otolepis, a fragmented population composed of five subpopulations in the desert environment of northwestern China, with small flower and large floral morph variation. All subpopulations but one exhibited pollen-stigma morphology dimorphism. The compatibility between mating types with different pollen-stigma morphologies remained consistent regardless of reciprocal herkogamy. Biased ratios and ramets per genet of the two mating types with distinct pollen-stigma morphologies caused asymmetric pollen flow and varying fruit sets in all subpopulations. Short-tongued insects were the primary pollinators due to small flower sizes. However, pollen-feeding Syrphidae sp. triggered asymmetry in pollen flow between high and low sex organs, with short-styled morphs having lower stigma pollen depositions and greater variation. Clonal growth amplified this variation by reducing intermorph pollen transfer. All in all, pollinators and clonal growth jointly drive floral morph variation. H-morphs with the same stigma-anther position and self-incompatibility, which mitigate the disadvantages of sunken low sex organs with differing from the classical homostyly, might arise from long- and short-styled morphs through a 'relaxed selection'. This study is the first to uncover the occurrence of the H-morph and its associated influencing factors in a distylous plant featuring clonal growth, small flowers and a fragmented population.
Collapse
Affiliation(s)
- Dengfu Ren
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Fangfang Jiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Aiqin Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| | - Jing Zhang
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, School of Life Science and Technology, Xinjiang University, Urumqi 830017, P.R China
| |
Collapse
|
4
|
Zhang W, Hu Y, Zhang S, Shao J. Integrative taxonomy in a rapid speciation group associated with mating system transition: A case study in the Primula cicutariifolia complex. Mol Phylogenet Evol 2023:107840. [PMID: 37279815 DOI: 10.1016/j.ympev.2023.107840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/30/2023] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
Accurate species delimitation is the key to biodiversity conservation and is fundamental to most branches of biology. However, species delimitation remains challenging in those evolutionary radiations associated with mating system transition from outcrossing to self-fertilization, which have frequently occurred in angiosperms and are usually accompanied by rapid speciation. Here, using the Primula cicutariifolia complex as a case, we integrated molecular, morphological and reproductive isolation evidence to test and verify whether its outcrossing (distylous) and selfing (homostylous) populations have developed into independent evolutionary lineages. Phylogenetic trees based on whole plastomes and SNPs of the nuclear genome both indicated that the distylous and homostylous populations grouped into two different clades. Multispecies coalescent, gene flow and genetic structure analyses all supported such two clades as two different genetic entities. In morphology, as expected changes in selfing syndrome, homostylous populations have significantly fewer umbel layers and smaller flower and leaf sizes compared to distylous populations, and the variation range of some floral traits, such as corolla diameter and umbel layers, show obvious discontinuity. Furthermore, hand-pollinated hybridization between the two clades produced almost no seeds, indicating that well post-pollination reproductive isolation has been established between them. Therefore, the distylous and homostylous populations in this studied complex are two independent evolutionary lineages, and thus these distylous populations should be treated as a distinct species, here named Primula qiandaoensis W. Zhang & J.W. Shao sp. nov.. Our empirical study of the P. cicutariifolia complex highlights the importance of applying multiple lines of evidence, in particular genomic data, to delimit species in pervasive evolutionary plant radiations associated with mating system transition.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; College of Life Sciences, Anqing Normal University, Anqing 246011, Anhui, China
| | - Yingfeng Hu
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Siyu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China
| | - Jianwen Shao
- College of Life Sciences, Anhui Normal University, Wuhu 241000, Anhui, China; Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu 241000, Anhui, China.
| |
Collapse
|
5
|
Jia Y, Liu C, Li Y, Xiang Y, Pan Y, Liu Q, Gao S, Yin X, Wang Z. Inheritance of distyly and homostyly in self-incompatible Primula forbesii. Heredity (Edinb) 2023; 130:259-268. [PMID: 36788365 PMCID: PMC10076296 DOI: 10.1038/s41437-023-00598-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/16/2023] Open
Abstract
The evolutionary transition from self-incompatible distyly to self-compatible homostyly frequently occurs in heterostylous taxa. Although the inheritance of distyly and homostyly has been deeply studied, our understanding on modifications of the classical simple Mendelian model is still lacking. Primula forbesii, a biennial herb native to southwest China, is a typical distylous species, but after about 20 years of cultivation with open pollination, self-compatible homostyly appeared, providing ideal material for the study of the inheritance of distyly and homostyly. In this study, exogenous homobrassinolide was used to break the heteromorphic incompatibility of P. forbesii. Furthermore, we performed artificial pollination and open-pollination experiments to observe the distribution of floral morphs in progeny produced by different crosses. The viability of seeds from self-pollination was always the lowest among all crosses, and the homozygous S-morph plants (S/S) occurred in artificial pollination experiments but may experience viability selection. The distyly of P. forbesii is governed by a single S-locus, with S-morph dominant hemizygotes (S/-) and L-morph recessive homozygotes (-/-). Homostylous plants have a genotype similar to L-morph plants, and homostyly may be caused by one or more unlinked modifier genes outside the S-locus. Open pollinations confirm that autonomous self-pollination occurs frequently in L-morphs and homostylous plants. This study deepens the understanding of the inheritance of distyly and details a case of homostyly that likely originated from one or more modifier genes.
Collapse
Affiliation(s)
- Yin Jia
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China.
| | - Cailei Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yifeng Li
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanfen Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Yuanzhi Pan
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Qinglin Liu
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Suping Gao
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Xiancai Yin
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| | - Zexun Wang
- College of Landscape Architecture, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
6
|
Liu C, Jia Y, Li Y, Xiang Y, Pan Y, Liu Q, Ma K, Yin X. The rapid appearance of homostyly in a cultivated distylous population of Primula forbesii. Ecol Evol 2022; 12:e9515. [PMID: 36415874 PMCID: PMC9674475 DOI: 10.1002/ece3.9515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/20/2022] Open
Abstract
Evolutionary breakdown from rigorous outbreeding to self-fertilization frequently occurs in angiosperms. Since the pollinators are not necessary, self-compatible populations often reduce investment in floral display characteristics and pollination reward. Primula forbesii is a biennial herb with distribution restricted to southwest China; it was initially a self-incompatible distylous species, but after 20 years of artificial domestication, homostyly appeared. This change in style provides an ideal material to explore the time required for plant mating systems to adapt to new environmental changes and test whether flower attraction has reduced following transitions to selfing. We did a survey in wild populations of P. forbesii where its seeds were originally collected 20 years ago and recorded the floral morph frequencies and morphologies. The floral morphologies, self-incompatibility, floral scent, and pollinator visitation between distyly and homostyly were compared in greenhouse. Floral morph frequencies of wild populations did not change, while the cultivated population was inclined to L-morph and produced homostyly. Evidence from stigma papillae and pollen size supports the hypothesis that the homostyly possibly originated from mutations of large effect genes in distylous linkage region. Transitions to self-compatible homostyly are accompanied by smaller corolla size, lower amounts of terpenoids, especially linalool and higher amounts of fatty acid derivatives. The main pollinators in the greenhouse were short-tongued Apis cerana. However, homostyly had reduced visiting frequency. The mating system of P. forbesii changed rapidly in just about 20 years of domestication, and our findings confirm the hypothesis that the transition to selfing is accompanied by decreased flower attraction.
Collapse
Affiliation(s)
- Cai‐Lei Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yin Jia
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yi‐Feng Li
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yuan‐Fen Xiang
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Yuan‐Zhi Pan
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Qing‐Lin Liu
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Ke‐Hang Ma
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| | - Xian‐Cai Yin
- College of Landscape ArchitectureSichuan Agricultural UniversityChengduChina
| |
Collapse
|
7
|
Zhang W, Zhang Y, Shao JW. Primulaxinningensis (Primulaceae), a new species from karst caves in Hunan, China. PHYTOKEYS 2022; 199:155-166. [PMID: 36761875 PMCID: PMC9848981 DOI: 10.3897/phytokeys.199.85231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 06/18/2023]
Abstract
Primulaxinningensis Wei Zhang bis & J.W.Shao, a new species from Hunan Province, China, is described. Its leaf morphology is similar to the P.merrilliana complex and flower morphology similar to P.cicutariifolia, but it can be distinguished from the former by the black pollen sac, corolla lobes apex obviously emarginate and can be differed from the latter by cotyledon triangular obovate, plants densely covered with glandular hairs and special habitat (karst caves). The whole plastid genome of this new species is 151, 601-151, 630 bp in length. Based on the whole plastid genome sequences, phylogenetic trees revealed that the new species did not genetically relate to the above two mentioned morphologically similar species, but it was closely related to P.hubeiensis. Currently, only three populations were discovered within a small distribution area, thus, it is preliminarily considered as Vulnerable (VU) according to criteria of the IUCN Red List.
Collapse
Affiliation(s)
- Wei Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, ChinaAnhui Normal UniversityWuhuChina
- Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu, Anhui 241000, ChinaProvincial Key Laboratory of Conservation and Utilization of Biological ResourcesWuhuChina
| | - Yu Zhang
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, ChinaAnhui Normal UniversityWuhuChina
| | - Jian Wen Shao
- College of Life Sciences, Anhui Normal University, Wuhu, Anhui 241000, ChinaAnhui Normal UniversityWuhuChina
- Provincial Key Laboratory of Conservation and Utilization of Biological Resources, Wuhu, Anhui 241000, ChinaProvincial Key Laboratory of Conservation and Utilization of Biological ResourcesWuhuChina
| |
Collapse
|