1
|
Cedden D, Bucher G. The quest for the best target genes for RNAi-mediated pest control. INSECT MOLECULAR BIOLOGY 2024. [PMID: 39450789 DOI: 10.1111/imb.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
RNA interference (RNAi) has emerged as an eco-friendly alternative to classic pesticides for pest control. This review highlights the importance of identifying the best target genes for RNAi-mediated pest control. We argue that the knowledge-based approach to predicting effective targets is limited by our current gaps of knowledge, making unbiased screening a superior method for discovering the best target processes and genes. We emphasize the recent evidence that suggests targeting conserved basic cellular processes, such as protein degradation and translation, is more effective than targeting the classic pesticide target processes. We support these claims by comparing the efficacy of previously reported RNAi target genes and classic insecticide targets with data from our genome-wide RNAi screen in the red flour beetle, Tribolium castaneum. Finally, we provide practical advice for identifying excellent target genes in other pests, where large-scale RNAi screenings are typically challenging.
Collapse
Affiliation(s)
- Doga Cedden
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| |
Collapse
|
2
|
Yi SC, Chen XH, Wu YH, Wu J, Wang JQ, Wang MQ. Identification of odorant-binding proteins and functional analysis of antenna-specific BhorOBP28 in Batocera horsfieldi (Hope). PEST MANAGEMENT SCIENCE 2024; 80:4055-4068. [PMID: 38567786 DOI: 10.1002/ps.8112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/10/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024]
Abstract
BACKGROUND The important wood-boring pest Batocera horsfieldi has evolved a sensitive olfactory system to locate host plants. Odorant-binding proteins (OBPs) are thought to play key roles in olfactory recognition. Therefore, exploring the physiological function of OBPs could facilitate a better understanding of insect chemical communications. RESULTS In this research, 36 BhorOBPs genes were identified via transcriptome sequencing of adults' antennae from B. horsfieldi, and most BhorOBPs were predominantly expressed in chemosensory body parts. Through fluorescence competitive binding and fluorescence quenching assays, the antenna-specific BhorOBP28 was investigated and displayed strong binding affinities forming stable complexes with five volatiles, including (+)-α-Pinene, (+)-Limonene, β-Pinene, (-)-Limonene, and (+)-Longifolene, which could also elicit conformation changes when they were interacting with BhorOBP28. Batocera horsfieldi females exhibited a preference for (-)-Limonene, and a repellent response to (+)-Longifolene. Feeding dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of BhorOBP28, and could further impair B. horsfieldi attraction to (-)-Limonene and repellent activity of (+)-Longifolene. The analysis of site-directed mutagenesis revealed that Leu7, Leu72, and Phe121 play a vital role in selectively binding properties of BhorOBP28. CONCLUSION By modeling the molecular mechanism of olfactory recognition, these results demonstrate that BhorOBP28 is involved in the chemoreception of B. horsfieldi. The bacterial-expressed dsRNA delivery system gains new insights into potential population management strategies. Through the olfactory process concluded that discovering novel behavioral regulation and environmentally friendly control options for B. horsfieldi in the future. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shan-Cheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin-Hui Chen
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yu-Hang Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Juan Wu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Qing Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Man-Qun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
3
|
Cedden D, Güney G, Debaisieux X, Scholten S, Rostás M, Bucher G. Effective target genes for RNA interference-based management of the cabbage stem flea beetle. INSECT MOLECULAR BIOLOGY 2024. [PMID: 38970375 DOI: 10.1111/imb.12942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 06/22/2024] [Indexed: 07/08/2024]
Abstract
The cabbage stem flea beetle (CSFB, Psylliodes chrysocephala) is a key pest of oilseed rape. The ban on neonicotinoids in the European Union due to environmental concerns and the emergence of pyrethroid-resistant populations have made the control of CSFB extremely challenging. In search of a solution, we have recently shown that RNA interference (RNAi) has potential in the management of CSFB. However, the previously tested target genes for RNAi-mediated pest control (subsequently called target genes) exhibited moderate and slow-acting lethal effects. In this study, 27 double-stranded RNAs (dsRNAs) were orally delivered to identify highly effective target genes in CSFB adults by leveraging the findings of a genome-wide RNAi screen in Tribolium castaneum. Our screen using 500 ng of dsRNA identified 10 moderately effective (> 50% mortality) and 4 highly effective target genes (100% mortality in 8-13 days). The latter mainly included proteasome subunits. Gene expression measurements confirmed target gene silencing and dose-response studies revealed LD50 values as low as ~20 ng in 14 days following a single exposure to dsRNA. Four highly effective dsRNAs also inhibited leaf damage (up to ~75%) and one affected locomotion. The sequences of promising target genes were subjected to in silico target prediction in non-target organisms, for example, beneficials such as honeybees, to design environmentally friendly dsRNAs. Overall, the study provides valuable insights for the development of dsRNA-based insecticides against CSFB.
Collapse
Affiliation(s)
- Doga Cedden
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Xavier Debaisieux
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Gregor Bucher
- Johann-Friedrich-Blumenbach Institute, GZMB, Department of Evolutionary Developmental Genetics, University of Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Cedden D, Güney G, Scholten S, Rostás M. Lethal and sublethal effects of orally delivered double-stranded RNA on the cabbage stem flea beetle, Psylliodes chrysocephala. PEST MANAGEMENT SCIENCE 2024; 80:2282-2293. [PMID: 37020381 DOI: 10.1002/ps.7494] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/09/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The cabbage stem flea beetle (Psylliodes chrysocephala) is one of the most important insect pests of oilseed rape (Brassica napus) in northern Europe. The emergence of insecticide-resistant populations and the ban on neonicotinoid seed treatments have made the management of this pest challenging and research is needed to develop alternative strategies such as RNA interference (RNAi). We investigated lethal and sublethal effects of orally delivered double-stranded (ds)RNAs targeting P. chrysocephala orthologs of Sec23 and vacuolar adenosine triphosphatase subunit G (VatpG), which are involved in endoplasmic reticulum-Golgi transport and organelle acidification, respectively. RESULTS Feeding bioassays on P. chrysocephala adults showed that the highest concentration (200 ng/leaf disk) of dsSec23 caused mortalities of 76% and 56% in pre-aestivating and post-aestivating beetles, respectively, while the same concentration of dsVatpG led to mortality rates of ~34% in both stages. Moreover, sublethal effects, such as decreased feeding rates and attenuated locomotion were observed. Small RNA sequencing and gene expression measurements following the delivery of dsRNAs demonstrated the generation of ~21 nucleotide-long small interfering RNAs and a systemic RNAi response in P. chrysocephala. CONCLUSION We demonstrate that P. chrysocephala is a promising candidate for developing RNAi-based pest management strategies. Further research is necessary to identify more effective target genes and to assess potential non-target effects. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Doga Cedden
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
- Department of Evolutionary Developmental Genetics, Johann-Friedrich-Blumenbach Institute, GZMB, University of Göttingen, Göttingen, Germany
| | - Gözde Güney
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Stefan Scholten
- Division of Crop Plant Genetics, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| | - Michael Rostás
- Agricultural Entomology, Department of Crop Sciences, University of Göttingen, Göttingen, Germany
| |
Collapse
|
5
|
Yang R, Li D, Yi S, Wei Y, Wang M. Odorant-binding protein 19 in Monochamus alternatus involved in the recognition of a volatile strongly emitted from ovipositing host pines. INSECT SCIENCE 2024; 31:134-146. [PMID: 37358042 DOI: 10.1111/1744-7917.13238] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 06/27/2023]
Abstract
Monochamus alternatus is the primary carrier of pine wood nematodes, which pose a serious threat to Pinus spp. in many countries. Newly emerging M. alternatus adults feed on heathy host pines, while matured adults transfer to stressed host pines for mating and oviposition. Several odorant-binding proteins (OBPs) of M. alternatus have been proved to aid in the complex process of host location. To clarify the corresponding relations between OBPs and pine volatiles, more OBPs need to be studied. In this research, MaltOBP19 showed a specific expression in the antennae and mouthparts of M. alternatus, and it was marked in 4 types of antenna sensilla by immunolocalization. Fluorescence binding assays demonstrated the high binding affinity of MaltOBP19 with camphene and myrcene in vitro. In Y-tube olfactory experiments, M. alternatus adults were attracted by camphene and RNAi of OBP19 via microinjection significantly decreased their attraction index. Myrcene induced phobotaxis, but RNAi had no significant effect on this behavior. Further, we found that ingesting dsOBP19 produced by a bacteria-expressed system with a newly constructed vector could lead to the knockdown of MaltOBP19. These results suggest that MaltOBP19 may play a role in the process of host conversion via the recognition of camphene, which has been identified to be strongly released in stressed host pines. In addition, it is proved that knockdown of OBP can be achieved by oral administration of bacteria-expressed double-stranded RNA in M. alternatus adults, providing a new perspective in the control of M. alternatus.
Collapse
Affiliation(s)
- Ruinan Yang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dongzhen Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing, China
| | - Shancheng Yi
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yi Wei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Manqun Wang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
6
|
Bonina V, Arpaia S. The use of RNA interference for the management of arthropod pests in livestock farms. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:631-646. [PMID: 37401856 DOI: 10.1111/mve.12677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/11/2023] [Indexed: 07/05/2023]
Abstract
Pest management in farm animals is an important action to contain economic damage to livestock production and prevent transmission of severe diseases to the stock. The use of chemical insecticides is still the most common approach followed by farmers; however, avoiding possible toxic effects on animals is a fundamental task for pest control measures compatible with animal well-being. Moreover, legal constraints and insurgence of resistance by target species to the available insecticidal compounds are increasingly complicating farmers' operations. Alternatives to chemical pesticides have been explored with some promising results in the area of biological control or the use of natural products as sprays. The application of RNA interference techniques has enabled the production of new means of pest control in agriculture, and it is opening a promising avenue for controlling arthropod pests of livestock. Transcript depletion of specific target genes of the recipient organisms is based on the action of double-strand RNAs (dsRNA) capable of impairing the production of fundamental proteins. Their mode of action, based on the specific recognition of short genomic sequences, is expected to be highly selective towards non-target organisms potentially exposed; in addition, there are physical and chemical barriers to dsRNA uptake by mammalian cells that render these products practically innocuous for higher animals. Summarising existing literature on gene silencing for main taxa of arthropod pests of livestock (Acarina, Diptera, Blattoidea), this review explores the perspectives of practical applications of dsRNA-based pesticides against the main pests of farm animals. Knowledge gaps are summarised to stimulate additional research in this area.
Collapse
Affiliation(s)
- Valeria Bonina
- Department of Veterinary Medicine and Animal Productions, Università degli Studi di Napoli "Federico II", Naples, Italy
| | - Salvatore Arpaia
- ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, TERIN-BBC Research Centre Trisaia, Rotondella, Matera, Italy
| |
Collapse
|
7
|
Willow J, Silva AI, Taning CNT, Smagghe G, Veromann E. Towards dsRNA-integrated protection of medical Cannabis crops: considering human safety, recent- and developing RNAi methods, and research inroads. PEST MANAGEMENT SCIENCE 2023; 79:1267-1272. [PMID: 36514999 DOI: 10.1002/ps.7323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Owing to the expanding industry of medical Cannabis, we discuss recent milestones in RNA interference (RNAi)-based crop protection research and development that are transferable to medical Cannabis cultivation. Recent and prospective increases in pest pressure in both indoor and outdoor Cannabis production systems, and the need for effective nonchemical pest control technologies (particularly crucial in the context of cultivating plants for medical purposes), are discussed. We support the idea that developing RNAi tactics towards protection of medical Cannabis could play a major role in maximizing success in this continuously expanding industry. However, there remain critical knowledge gaps, especially with regard to RNA pesticide biosafety from a human toxicological viewpoint, as a result of the medical context of Cannabis product use. Furthermore, efforts are needed to optimize transformation and micropropagation of Cannabis plants, examine cutting edge RNAi techniques for various Cannabis-pest scenarios, and investigate the combined application of RNAi- and biological control tactics in medical Cannabis cultivation. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Ana I Silva
- Department of Psychiatry and Neuropsychology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
- Neuroscience and Mental Health Research Institute, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Clauvis Nji Tizi Taning
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| |
Collapse
|
8
|
Xu W, Zhang M, Li Y, He W, Li S, Zhang J. Complete protection from Henosepilachna vigintioctopunctata by expressing long double-stranded RNAs in potato plastids. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1003-1011. [PMID: 36382860 DOI: 10.1111/jipb.13411] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
RNA interference (RNAi) has emerged as a powerful technology for pest management. Previously, we have shown that plastid-mediated RNAi (PM-RNAi) can be utilized to control the Colorado potato beetle, an insect pest in the Chrysomelidae family; however, whether this technology is suitable for controlling pests in the Coccinellidae remained unknown. The coccinellid 28-spotted potato ladybird (Henosepilachna vigintioctopunctata; HV) is a serious pest of solanaceous crops. In this study, we identified three efficient target genes (β-Actin, SRP54, and SNAP) for RNAi using in vitro double-stranded RNAs (dsRNAs) fed to HV, and found that dsRNAs targeting β-Actin messenger RNA (dsACT) induced more potent RNAi than those targeting the other two genes. We next generated transplastomic and nuclear transgenic potato (Solanum tuberosum) plants expressing HV dsACT. Long dsACT stably accumulated to up to 0.7% of the total cellular RNA in the transplastomic plants, at least three orders of magnitude higher than in the nuclear transgenic plants. Notably, the transplastomic plants also exhibited a significantly stronger resistance to HV, killing all larvae within 6 d. Our data demonstrate the potential of PM-RNAi as an efficient pest control measure for HV, extending the application range of this technology to Coccinellidae pests.
Collapse
Affiliation(s)
- Wenbo Xu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Miao Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Yangcun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Wanwan He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Shengchun Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
| | - Jiang Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Hongshan Laboratory, School of Life Sciences, Hubei University, Wuhan, 430062, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China
| |
Collapse
|
9
|
Dong Y, Zhang W, Jin Y, Shen D, Xia A. Apolygus lucorum effector Al6 promotes insect feeding performance on soybean plants: RNAi analysis and feeding behaviour study with electrical penetration graph. INSECT MOLECULAR BIOLOGY 2023; 32:1-10. [PMID: 35986559 DOI: 10.1111/imb.12808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
The mirid bug Apolygus lucorum, a dominant mirid species in northern China, is a notorious polyphagous pest with more than 200 hosts, including several major crops such as cotton and soybean, resulting in massive economic loss. Studies of insect salivary effectors may provide a novel control strategy for A. lucorum. An A. lucorum effector, that is, Al6, that inhibits plant immunity by using glutathione peroxidase to repress reactive oxidase accumulation was previously identified. In this study, we further explored the molecular functions of Al6 associated with feeding behaviour and insect survival on soybean, a major host of A. lucorum, using RNA interference and electrical penetration graph (EPG) techniques. We initially observed the injury symptom of this mirid bug and characterized feeding behaviour on soybean leaves using EPG. Our results revealed that A. lucorum preferred to feed on young plant organs such as tender leaves, shoots and buds. This mirid bug used cell rupture as a feeding strategy to ingest cell contents from plant tissues. Subsequently, we silenced the Al6 gene using RNAi and investigated the feeding behaviour, honeydew excretion, body weight, and survival rates of A. lucorum on soybean after Al6 knockdown. Our results demonstrated that silencing of Al6 significantly reduced feeding duration, amount of honeydew secretion, body weight, and survival rates of A. lucorum. Thus, our findings provide a novel molecular target of plant-mediated RNAi for the control of A. lucorum.
Collapse
Affiliation(s)
- Yumei Dong
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Wendan Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Yan Jin
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Danyu Shen
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Ai Xia
- Department of Entomology, College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Bai M, Liu ZL, Zhou YY, Xu QX, Liu TX, Tian HG. Influence of diverse storage conditions of double-stranded RNA in vitro on the RNA interference efficiency in vivo insect Tribolium castaneum. PEST MANAGEMENT SCIENCE 2023; 79:45-54. [PMID: 36086883 DOI: 10.1002/ps.7171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/10/2022] [Accepted: 09/10/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND A significant variation in RNA interference (RNAi) efficiency hinders further functional gene studies and pest control application in many insects. The available double-stranded RNA (dsRNA) molecules introduced into the target cells are regarded as the crucial factor for efficient RNAi response. However, numerous studies have only focused on dsRNA stability in vivo; it is uncertain whether different dsRNA storage conditions in vitro play a role in variable RNAi efficiency among insects. RESULTS A marker gene cardinal, which leads to white eyes when knocked-down in the red flour beetle Tribolium castaneum, was used to evaluate the effects of RNAi efficiency under different dsRNA storage conditions. We demonstrated that the dsRNA molecule is very stable under typical cryopreservation temperatures (-80 and -20 °C) within 180 days, and RNAi efficiency shows no significant differences under either low temperature. Unexpectedly, while dsRNA molecules were treated with multiple freeze-thaw cycles up to 50 times between -80/-20 °C and room temperature, we discovered that dsRNA integrity and RNAi efficiency were comparable with fresh dsRNA. Finally, when the stability of dsRNA was further measured under refrigerated storage conditions (4 °C), we surprisingly found that dsRNA is still stable within 180 days and can induce an efficient RNAi response as that of initial dsRNA. CONCLUSION Our results indicate that dsRNA is extraordinarily stable under various temperature storage conditions that did not significantly impact RNAi efficiency in vivo insects. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mei Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Zi-Ling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Yu-Yu Zhou
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qiu-Xuan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Tong-Xian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Hong-Gang Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
- Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
11
|
Mondal M, Carver M, Brown JK. Characteristics of environmental RNAi in potato psyllid, Bactericera cockerelli (Sulc) (Hemiptera: Psylloidea: Triozidae). Front Physiol 2022; 13:931951. [PMID: 36330211 PMCID: PMC9623324 DOI: 10.3389/fphys.2022.931951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/20/2022] [Indexed: 11/23/2022] Open
Abstract
RNA interference (RNAi) has potential to become a major tool for integrated management of insect pests of agricultural crops based on sequence-specificity and low doses of rapidly biodegradable dsRNA. Deploying ‘environmental RNAi’ for control of insect vectors of plant pathogens is of increasing interest for combatting emerging plant diseases. Hemipteran insect vectors, including psyllids, are vascular feeders, making their development difficult to control specifically by targeting with pesticidal chemistries. Psyllids transmit “Candidatus Liberibacter solanacearum” the causal organism of potato zebra chip and tomato vein greening diseases, transmitted, respectively, by the potato or tomato psyllid (PoP). Until now, the optimal effective concentration(s) of double-stranded RNA (dsRNA) required for significant gene knockdown and RNAi persistence in PoP have not been determined. The objective of this study was to optimize RNAi in young PoP adults and 3rd instars for screening by oral delivery of dsRNAs. The minimal effective dsRNA concentrations required for robust knockdown and persistence were evaluated by delivering seven concentrations spanning 0.1 ng/μL to 500 ng/μL over post ingestion-access periods (IAP) ranging from 48 h to 12 days. The PoP gene candidates evaluated as targets were vacuolar ATPase subunit A, clathrin heavy chain, and non-fermenting protein 7, which were evaluated for knockdown by qPCR amplification. The minimum and/or the second most effective dsRNA concentration resulting in effective levels of gene knockdown was 100 ng/μL for all three targets. Higher concentrations did not yield further knockdown, indicating potential RISC saturation at the higher doses. Gene silencing post-IAP of 100 ng/μL dsRNA persisted for 3–5 days in adults and nymphs, with the PoP 3rd instar, followed by teneral and mature adults, respectively, exhibiting the most robust RNAi-response.
Collapse
Affiliation(s)
- Mosharrof Mondal
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- RNAissance Ag LLC, St. Louis, MO, United States
| | - Megan Carver
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
| | - Judith K. Brown
- School of Plant Sciences, The University of Arizona, Tucson, AZ, United States
- *Correspondence: Judith K. Brown,
| |
Collapse
|
12
|
Mezzetti B, Arpaia S, Baraldi E, Dietz-Pfeilstetter A, Smagghe G, Ventura V, Sweet JB. Editorial: Advances and Challenges of RNAi Based Technologies for Plants-Volume 2. FRONTIERS IN PLANT SCIENCE 2022; 13:930851. [PMID: 35898218 PMCID: PMC9309804 DOI: 10.3389/fpls.2022.930851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Affiliation(s)
- Bruno Mezzetti
- Department of Agriculture, Food and Environmental Sciences, Marche Polytechnic University, Ancona, Italy
| | - Salvatore Arpaia
- Agenzia Nazionale per le Nuove Tecnologie, l'Energia e lo Sviluppo Economico Sostenibile (ENEA) Research Centre Trisaia - Division Bioenergy, Biorefinery and Green Chemistry, Rotondella, Italy
| | - Elena Baraldi
- DISTAL-Department of Agricultural and Food Science, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Antje Dietz-Pfeilstetter
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants, Institute for Biosafety in Plant Biotechnology, Braunschweig, Germany
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Ghent University, Ghent, Belgium
| | - Vera Ventura
- Department of Civil Engineering, Architecture, Land, Environment and of Mathematics, University of Brescia, Brescia, Italy
| | - Jeremy B. Sweet
- Sweet Environmental Consultant (SEC), Cambridge, United Kingdom
| |
Collapse
|
13
|
Willow J, Veromann E. Integrating RNAi Technology in Smallholder Farming: Accelerating Sustainable Development Goals. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.868922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Approximately 84% of farms globally are <2 hectares; these and other smallholder farms collectively produce over one third of humanity's food. However, smallholder farms, particularly in developing countries, encounter difficulties in both production and profits due to their vulnerabilities. Sustainable intensification—increasing crop yield without significantly greater resource use—must be globally adopted in smallholder farming to achieve various Sustainable Development Goals (SDGs) endorsed by the United Nations (UN). While traditional techniques for conservation agriculture must be maintained and further promoted, new technologies will undoubtedly play a major role in achieving high yields in a sustainable and environmentally safe manner. RNA interference (RNAi) technology, particularly the use of transgenic RNAi cultivars and/or sprayable double-stranded RNA (dsRNA) pesticides, could accelerate progress in reaching these goals due to dsRNA's nucleotide sequence-specific mode of action against eukaryotic and viral pests. This sequence-specificity allows silencing of specific genetic targets in focal pest species of interest, potentially resulting in negligible effects on non-target organisms inhabiting the agroecosystem. It is our perspective that recent progress in RNAi technology, together with the UN's endorsement of SDGs that promote support in- and for developing countries, should facilitate an integrated approach to sustainable intensification of smallholder farms, whereby RNAi technology is used in combination with traditional techniques for sustainable intensification. However, the development of such approaches in developing countries will require developed countries to adhere to currently-defined socioeconomic SDGs.
Collapse
|
14
|
Willow J, Cook SM, Veromann E, Smagghe G. Uniting RNAi Technology and Conservation Biocontrol to Promote Global Food Security and Agrobiodiversity. Front Bioeng Biotechnol 2022; 10:871651. [PMID: 35547161 PMCID: PMC9081497 DOI: 10.3389/fbioe.2022.871651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/05/2022] [Indexed: 12/01/2022] Open
Abstract
Habitat loss and fragmentation, and the effects of pesticides, contribute to biodiversity losses and unsustainable food production. Given the United Nation's (UN's) declaration of this decade as the UN Decade on Ecosystem Restoration, we advocate combining conservation biocontrol-enhancing practices with the use of RNA interference (RNAi) pesticide technology, the latter demonstrating remarkable target-specificity via double-stranded (ds)RNA's sequence-specific mode of action. This specificity makes dsRNA a biosafe candidate for integration into the global conservation initiative. Our interdisciplinary perspective conforms to the UN's declaration, and is facilitated by the Earth BioGenome Project, an effort valuable to RNAi development given its utility in providing whole-genome sequences, allowing identification of genetic targets in crop pests, and potentially relevant sequences in non-target organisms. Interdisciplinary studies bringing together biocontrol-enhancing techniques and RNAi are needed, and should be examined for various crop‒pest systems to address this global problem.
Collapse
Affiliation(s)
- Jonathan Willow
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Samantha M. Cook
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, United Kingdom
| | - Eve Veromann
- Chair of Plant Health, Estonian University of Life Sciences, Tartu, Estonia
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|