1
|
Adeyanju AO, Rich PJ, Ejeta G. A powerful molecular marker to detect mutations at sorghum LOW GERMINATION STIMULANT 1. THE PLANT GENOME 2024:e20520. [PMID: 39358304 DOI: 10.1002/tpg2.20520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/10/2024] [Accepted: 09/11/2024] [Indexed: 10/04/2024]
Abstract
The parasitic weed Striga (Striga hermonthica) limits productivity of sorghum (Sorghum bicolor) and other cereals in sub-Saharan Africa and elsewhere. Improved host plant genetics is an effective control method but verified loci contributing to Striga resistance are limited. LOW GERMINATION STIMULANT 1 remains the only known sorghum locus affecting resistance to Striga. Functional loss (lgs1) alleles at this locus result in low Striga germination stimulant activity. We developed a robust polymerase chain reaction (PCR)-based LGS1 marker that detects all known natural lgs1 alleles. We have successfully used this marker to improve Striga resistance in our sorghum breeding program. To check its utility among diverse sets of germplasm, we genotyped 406 lines of the sorghum association panel (SAP) with the marker and phenotyped them for Striga germination stimulant activity. The SAP contains 23 lines (6%) with lgs1 mutations that involve a complete loss of this gene. Three previously described deletion alleles (lgs1-1, lgs1-2, and lgs1-3) ranging from 28.5 to 34 kbp are present among SAP members with a new one, lgs1-6, missing nearly 50 kbp relative to the reference genome. All 23 members of the SAP carrying lgs1 alleles had low Striga germination stimulant activity. The smaller previously described intragenic deletion mutations lgs1-4 and lgs1-5 are not present in the SAP. The LGS1 marker is useful for both detecting sources of lgs1 and introgressing Striga resistance into new genetic backgrounds.
Collapse
Affiliation(s)
| | - Patrick J Rich
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
2
|
Sigalas PP, Bennett T, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. At the crossroads: strigolactones mediate changes in cytokinin synthesis and signalling in response to nitrogen limitation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:139-158. [PMID: 39136678 DOI: 10.1111/tpj.16976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/24/2024] [Accepted: 08/01/2024] [Indexed: 09/27/2024]
Abstract
Strigolactones (SLs) are key regulators of shoot growth and responses to environmental stimuli. Numerous studies have indicated that nitrogen (N) limitation induces SL biosynthesis, suggesting that SLs may play a pivotal role in coordinating systemic responses to N availability, but this idea has not been clearly demonstrated. Here, we generated triple knockout mutants in the SL synthesis gene TaDWARF17 (TaD17) in bread wheat and investigated their phenotypic and transcriptional responses under N limitation, aiming to elucidate the role of SLs in the adaptation to N limitation. Tad17 mutants display typical SL mutant phenotypes, and fail to adapt their shoot growth appropriately to N. Despite exhibiting an increased tillering phenotype, Tad17 mutants continued to respond to N limitation by reducing tiller number, suggesting that SLs are not the sole regulators of tillering in response to N availability. RNA-seq analysis of basal nodes revealed that the loss of D17 significantly altered the transcriptional response of N-responsive genes, including changes in the expression profiles of key N response master regulators. Crucially, our findings suggest that SLs are required for the transcriptional downregulation of cytokinin (CK) synthesis and signalling in response to N limitation. Collectively, our results suggest that SLs are essential for the appropriate morphological and transcriptional adaptation to N limitation in wheat, and that the repressive effect of SLs on shoot growth is partly mediated by their repression of CK synthesis.
Collapse
Affiliation(s)
| | - Tom Bennett
- Faculty of Biological Sciences, School of Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden, AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Plant Nutrition R&D Department, Centre Mondial d'Innovation of Roullier Group, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | | |
Collapse
|
3
|
Daignan-Fornier S, Keita A, Boyer FD. Chemistry of Strigolactones, Key Players in Plant Communication. Chembiochem 2024; 25:e202400133. [PMID: 38607659 DOI: 10.1002/cbic.202400133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/12/2024] [Accepted: 04/12/2024] [Indexed: 04/13/2024]
Abstract
Today, the use of artificial pesticides is questionable and the adaptation to global warming is a necessity. The promotion of favorable natural interactions in the rhizosphere offers interesting perspectives for changing the type of agriculture. Strigolactones (SLs), the latest class of phytohormones to be discovered, are also chemical mediators in the rhizosphere. We present in this review the diversity of natural SLs, their analogs, mimics, and probes essential for the biological studies of this class of compounds. Their biosynthesis and access by organic synthesis are highlighted especially concerning noncanonical SLs, the more recently discovered natural SLs. Organic synthesis of analogs, stable isotope-labeled standards, mimics, and probes are also reviewed here. In the last part, the knowledge about the SL perception is described as well as the different inhibitors of SL receptors that have been developed.
Collapse
Affiliation(s)
- Suzanne Daignan-Fornier
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - Antoinette Keita
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| | - François-Didier Boyer
- Institut de Chimie des Substances Naturelles, UPR 2301, Université Paris-Saclay, CNRS, 91198, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Nomura T, Seto Y, Kyozuka J. Unveiling the complexity of strigolactones: exploring structural diversity, biosynthesis pathways, and signaling mechanisms. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1134-1147. [PMID: 37877933 DOI: 10.1093/jxb/erad412] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/20/2023] [Indexed: 10/26/2023]
Abstract
Strigolactone is the collective name for compounds containing a butenolide as a part of their structure, first discovered as compounds that induce seed germination of root parasitic plants. They were later found to be rhizosphere signaling molecules that induce hyphal branching of arbuscular mycorrhizal fungi, and, finally, they emerged as a class of plant hormones. Strigolactones are found in root exudates, where they display a great variability in their chemical structure. Their structure varies among plant species, and multiple strigolactones can exist in one species. Over 30 strigolactones have been identified, yet the chemical structure of the strigolactone that functions as an endogenous hormone and is found in the above-ground parts of plants remains unknown. We discuss our current knowledge of the synthetic pathways of diverse strigolactones and their regulation, as well as recent progress in identifying strigolactones as plant hormones. Strigolactone is perceived by the DWARF14 (D14), receptor, an α/β hydrolase which originated by gene duplication of KARRIKIN INSENSITIVE 2 (KAI2). D14 and KAI2 signaling pathways are partially overlapping paralogous pathways. Progress in understanding the signaling mechanisms mediated by two α/β hydrolase receptors as well as remaining challenges in the field of strigolactone research are reviewed.
Collapse
Affiliation(s)
- Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Japan
| | - Yoshiya Seto
- School of Agriculture, Meiji University, Kawasaki, Japan
| | - Junko Kyozuka
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Yoda A, Xie X, Yoneyama K, Miura K, McErlean CSP, Nomura T. A Stereoselective Strigolactone Biosynthesis Catalyzed by a 2-Oxoglutarate-Dependent Dioxygenase in Sorghum. PLANT & CELL PHYSIOLOGY 2023; 64:1034-1045. [PMID: 37307421 PMCID: PMC10504574 DOI: 10.1093/pcp/pcad060] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/06/2023] [Accepted: 06/10/2023] [Indexed: 06/14/2023]
Abstract
Seeds of root parasitic plants, Striga, Orobanche and Phelipanche spp., are induced to germinate by strigolactones (SLs) exudated from host roots. In Striga-resistant cultivars of Sorghum bicolor, the loss-of-function of the Low Germination Stimulant 1 (LGS1) gene changes the major SL from 5-deoxystrigol (5DS) to orobanchol, which has an opposite C-ring stereochemistry. The biosynthetic pathway of 5DS catalyzed by LGS1 has not been fully elucidated. Since other unknown regulators, in addition to LGS1 encoding a sulfotransferase, appear to be necessary for the stereoselective biosynthesis of 5DS, we examined Sobic.005G213500 (Sb3500), encoding a 2-oxoglutarate-dependent dioxygenase, as a candidate regulator, which is co-expressed with LGS1 and located 5'-upstream of LGS1 in the sorghum genome. When LGS1 was expressed with known SL biosynthetic enzyme genes including the cytochrome P450 SbMAX1a in Nicotiana benthamiana leaves, 5DS and its diastereomer 4-deoxyorobanchol (4DO) were produced in approximately equal amounts, while the production of 5DS was significantly larger than that of 4DO when Sb3500 was also co-expressed. We also confirmed the stereoselective 5DS production in an in vitro feeding experiment using synthetic chemicals with recombinant proteins expressed in Escherichia coli and yeast. This finding demonstrates that Sb3500 is a stereoselective regulator in the conversion of the SL precursor carlactone to 5DS, catalyzed by LGS1 and SbMAX1a, providing a detailed understanding of how different SLs are produced to combat parasitic weed infestations.
Collapse
Affiliation(s)
- Akiyoshi Yoda
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Xiaonan Xie
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| | - Kaori Yoneyama
- Graduate School of Agriculture, Ehime University, Matsuyama, Ehime, 790-8566 Japan
- Research and Development Bureau, Saitama University, Saitama-shi, Saitama, 338-8570 Japan
| | - Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8572 Japan
| | | | - Takahito Nomura
- Center for Bioscience Research and Education, Utsunomiya University, Utsunomiya, Tochigi, 321-8505 Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Tokyo, 183-8509 Japan
| |
Collapse
|
6
|
Dun EA, Brewer PB, Gillam EMJ, Beveridge CA. Strigolactones and Shoot Branching: What Is the Real Hormone and How Does It Work? PLANT & CELL PHYSIOLOGY 2023; 64:967-983. [PMID: 37526426 PMCID: PMC10504579 DOI: 10.1093/pcp/pcad088] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 07/26/2023] [Accepted: 08/01/2023] [Indexed: 08/02/2023]
Abstract
There have been substantial advances in our understanding of many aspects of strigolactone regulation of branching since the discovery of strigolactones as phytohormones. These include further insights into the network of phytohormones and other signals that regulate branching, as well as deep insights into strigolactone biosynthesis, metabolism, transport, perception and downstream signaling. In this review, we provide an update on recent advances in our understanding of how the strigolactone pathway co-ordinately and dynamically regulates bud outgrowth and pose some important outstanding questions that are yet to be resolved.
Collapse
Affiliation(s)
- Elizabeth A Dun
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Philip B Brewer
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- Waite Research Institute, School of Agriculture Food & Wine, The University of Adelaide, Adelaide, SA 5064, Australia
| | - Elizabeth M J Gillam
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Christine A Beveridge
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, The University of Queensland, St Lucia, QLD 4072, Australia
- School of Agriculture and Food Sustainability, The University of Queensland, St Lucia, QLD 4072, Australia
| |
Collapse
|
7
|
Sigalas PP, Buchner P, Thomas SG, Jamois F, Arkoun M, Yvin JC, Bennett MJ, Hawkesford MJ. Nutritional and tissue-specific regulation of cytochrome P450 CYP711A MAX1 homologues and strigolactone biosynthesis in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1890-1910. [PMID: 36626359 PMCID: PMC10049918 DOI: 10.1093/jxb/erad008] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Strigolactones (SLs) are a class of phytohormones regulating branching/tillering, and their biosynthesis has been associated with nutritional signals and plant adaptation to nutrient-limiting conditions. The enzymes in the SL biosynthetic pathway downstream of carlactone are of interest as they are responsible for structural diversity in SLs, particularly cytochrome P450 CYP711A subfamily members, such as MORE AXILLARY GROWTH1 (MAX1) in Arabidopsis. We identified 13 MAX1 homologues in wheat, clustering in four clades and five homoeologous subgroups. The utilization of RNA-sequencing data revealed a distinct expression pattern of MAX1 homologues in above- and below-ground tissues, providing insights into the distinct roles of MAX1 homologues in wheat. In addition, a transcriptional analysis showed that SL biosynthetic genes were systematically regulated by nitrogen supply. Nitrogen limitation led to larger transcriptional changes in the basal nodes than phosphorus limitation, which was consistent with the observed tillering suppression, as wheat showed higher sensitivity to nitrogen. The opposite was observed in roots, with phosphorus limitation leading to stronger induction of most SL biosynthetic genes compared with nitrogen limitation. The observed tissue-specific regulation of SL biosynthetic genes in response to nutritional signals is likely to reflect the dual role of SLs as rhizosphere signals and branching inhibitors.
Collapse
Affiliation(s)
| | - Peter Buchner
- Rothamsted Research, West Common, Harpenden AL5 2JQ, UK
| | | | - Frank Jamois
- Laboratoire de Physico-Chimie et Bioanalytique, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Mustapha Arkoun
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Jean-Claude Yvin
- Laboratoire de Nutrition Végétale, Centre Mondial de l’Innovation Roullier, Timac Agro International, 18 Avenue Franklin Roosevelt, Saint-Malo, 35400, France
| | - Malcolm J Bennett
- Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
| | | |
Collapse
|
8
|
Trasoletti M, Visentin I, Campo E, Schubert A, Cardinale F. Strigolactones as a hormonal hub for the acclimation and priming to environmental stress in plants. PLANT, CELL & ENVIRONMENT 2022; 45:3611-3630. [PMID: 36207810 PMCID: PMC9828678 DOI: 10.1111/pce.14461] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/29/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Strigolactones are phytohormones with many attributed roles in development, and more recently in responses to environmental stress. We will review evidence of the latter in the frame of the classic distinction among the three main stress acclimation strategies (i.e., avoidance, tolerance and escape), by taking osmotic stress in its several facets as a non-exclusive case study. The picture we will sketch is that of a hormonal family playing important roles in each of the mechanisms tested so far, and influencing as well the build-up of environmental memory through priming. Thus, strigolactones appear to be backstage operators rather than frontstage players, setting the tune of acclimation responses by fitting them to the plant individual history of stress experience.
Collapse
Affiliation(s)
| | | | - Eva Campo
- DISAFA, PlantStressLabTurin UniversityTurinItaly
| | | | | |
Collapse
|
9
|
Vinde MH, Cao D, Chesterfield RJ, Yoneyama K, Gumulya Y, Thomson RES, Matila T, Ebert BE, Beveridge CA, Vickers CE, Gillam EMJ. Ancestral sequence reconstruction of the CYP711 family reveals functional divergence in strigolactone biosynthetic enzymes associated with gene duplication events in monocot grasses. THE NEW PHYTOLOGIST 2022; 235:1900-1912. [PMID: 35644901 PMCID: PMC9544836 DOI: 10.1111/nph.18285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
The strigolactone (SL) class of phytohormones shows broad chemical diversity, the functional importance of which remains to be fully elucidated, along with the enzymes responsible for the diversification of the SL structure. Here we explore the functional evolution of the highly conserved CYP711A P450 family, members of which catalyze several key monooxygenation reactions in the strigolactone pathway. Ancestral sequence reconstruction was utilized to infer ancestral CYP711A sequences based on a comprehensive set of extant CYP711 sequences. Eleven ancestral enzymes, corresponding to key points in the CYP711A phylogenetic tree, were resurrected and their activity was characterized towards the native substrate carlactone and the pure enantiomers of the synthetic strigolactone analogue, GR24. The ancestral and extant CYP711As tested accepted GR24 as a substrate and catalyzed several diversifying oxidation reactions on the structure. Evidence was obtained for functional divergence in the CYP711A family. The monocot group 3 ancestor, arising from gene duplication events within monocot grasses, showed both increased catalytic activity towards GR24 and high stereoselectivity towards the GR24 isomer resembling strigol-type SLs. These results are consistent with a role for CYP711As in strigolactone diversification in early land plants, which may have extended to the diversification of strigol-type SLs.
Collapse
Affiliation(s)
- Marcos H. Vinde
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Da Cao
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Rebecca J. Chesterfield
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
- CSIRO Synthetic Biology Future Science PlatformCSIRO Land & Water, EcoSciences PrecinctDutton ParkBrisbaneQld4012Australia
| | - Kaori Yoneyama
- Graduate School of AgricultureEhime UniversityEhime790‐8566Japan
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
| | - Yosephine Gumulya
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Raine E. S. Thomson
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Tebogo Matila
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| | - Birgitta E. Ebert
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandSt LuciaQld4072Australia
| | - Christine A. Beveridge
- School of Biological Sciences, ARC Centre of Excellence for Plant Success in Nature and AgricultureThe University of QueenslandSt LuciaQld4072Australia
| | - Claudia E. Vickers
- Japan Science and Technology AgencyPRESTOSaitama332‐0012Japan
- ARC Centre of Excellence in Synthetic BiologyQueensland University of TechnologyBrisbaneQld4000Australia
- Griffith Institute for Drug DesignGriffith UniversityNathanBrisbaneQld4111Australia
| | - Elizabeth M. J. Gillam
- School of Chemistry and Molecular BiosciencesThe University of QueenslandSt LuciaQld4072Australia
| |
Collapse
|