1
|
Alrajeh S, Naveed Khan M, Irhash Putra A, Al-Ugaili DN, Alobaidi KH, Al Dossary O, Al-Obaidi JR, Jamaludin AA, Allawi MY, Al-Taie BS, Abdul Rahman N, Rahmad N. Mapping proteomic response to salinity stress tolerance in oil crops: Towards enhanced plant resilience. J Genet Eng Biotechnol 2024; 22:100432. [PMID: 39674646 PMCID: PMC11555348 DOI: 10.1016/j.jgeb.2024.100432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 12/16/2024]
Abstract
Exposure to saline environments significantly hampers the growth and productivity of oil crops, harmfully affecting their nutritional quality and suitability for biofuel production. This presents a critical challenge, as understanding salt tolerance mechanisms in crops is key to improving their performance in coastal and high-salinity regions. Our content might be read more properly: This review assembles current knowledge on protein-level changes related to salinity resistance in oil crops. From an extensive analysis of proteomic research, featured here are key genes and cellular pathways which react to salt stress. The literature evinces that cutting-edge proteomic approaches - such as 2D-DIGE, IF-MS/MS, and iTRAQ - have been required to reveal protein expression patterns in oil crops under salt conditions. These studies consistently uncover dramatic shifts in protein abundance associated with important physiological activities including antioxidant defence, stress-related signalling pathways, ion homeostasis, and osmotic regulation. Notably, proteins like ion channels (SOS1, NHX), osmolytes (proline, glycine betaine), antioxidant enzymes (SOD, CAT), and stress-related proteins (HSPs, LEA) play central roles in maintaining cellular balance and reducing oxidative stress. These findings underline the complex regulatory networks that govern oil crop salt tolerance. The application of this proteomic information can inform breeding and genetic engineering strategies to enhance salt resistance. Future research should aim to integrate multiple omics data to gain a comprehensive view of salinity responses and identify potential markers for crop improvement.
Collapse
Affiliation(s)
- Sarah Alrajeh
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Muhammad Naveed Khan
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Aidhya Irhash Putra
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia
| | - Dhafar N Al-Ugaili
- Department of Molecular and Medical Biotechnology, College of Biotechnology, AL-Nahrain University, Jadriya, Baghdad, Iraq
| | - Khalid H Alobaidi
- Department of Plant Biotechnology, College of Biotechnology, AL-Nahrain University, Baghdad, Iraq
| | - Othman Al Dossary
- Agricultural Biotechnology Department, College of Agriculture and Food Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Jameel R Al-Obaidi
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Applied Science Research Center. Applied Science Private University, Amman, Jordan.
| | - Azi Azeyanty Jamaludin
- Department of Biology, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak, Malaysia; Center of Biodiversity and Conservation, Faculty of Science and Mathematics, Universiti Pendidikan Sultan Idris, 35900 Tanjung Malim, Perak, Malaysia
| | - Mohammed Yahya Allawi
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Bilal Salim Al-Taie
- Environmental Health Department, College of Environmental Sciences, University of Mosul, 41002 Mosul, Iraq
| | - Norafizah Abdul Rahman
- Gene Marker Laboratory, Faculty of Agriculture and Life Sciences (AGLS), Science South Building, Lincoln University, Lincoln, 7608 Canterbury, New Zealand
| | - Norasfaliza Rahmad
- Agro-Biotechnology Institute, National Institutes of Biotechnology Malaysia, Jalan Bioteknologi, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
2
|
Tounsi S, Giorgi D, Kuzmanović L, Jrad O, Farina A, Capoccioni A, Ben Ayed R, Brini F, Ceoloni C. Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic Thinopyrum species greatly enhance tolerance of recipient durum wheat. FRONTIERS IN PLANT SCIENCE 2024; 15:1378186. [PMID: 38766466 PMCID: PMC11099908 DOI: 10.3389/fpls.2024.1378186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 04/09/2024] [Indexed: 05/22/2024]
Abstract
Increased soil salinization, tightly related to global warming and drought and exacerbated by intensified irrigation supply, implies highly detrimental effects on staple food crops such as wheat. The situation is particularly alarming for durum wheat (DW), better adapted to arid/semi-arid environments yet more sensitive to salt stress than bread wheat (BW). To enhance DW salinity tolerance, we resorted to chromosomally engineered materials with introgressions from allied halophytic Thinopyrum species. "Primary" recombinant lines (RLs), having portions of their 7AL arms distally replaced by 7el1L Th. ponticum segments, and "secondary" RLs, harboring Th. elongatum 7EL insertions "nested" into 7el1L segments, in addition to near-isogenic lines lacking any alien segment (CLs), cv. Om Rabia (OR) as salt tolerant control, and BW introgression lines with either most of 7el1 or the complete 7E chromosome substitution as additional CLs, were subjected to moderate (100 mM) and intense (200 mM) salt (NaCl) stress at early growth stages. The applied stress altered cell cycle progression, determining a general increase of cells in G1 and a reduction in S phase. Assessment of morpho-physiological and biochemical traits overall showed that the presence of Thinopyrum spp. segments was associated with considerably increased salinity tolerance versus its absence. For relative water content, Na+ accumulation and K+ retention in roots and leaves, oxidative stress indicators (malondialdehyde and hydrogen peroxide) and antioxidant enzyme activities, the observed differences between stressed and unstressed RLs versus CLs was of similar magnitude in "primary" and "secondary" types, suggesting that tolerance factors might reside in defined 7el1L shared portion(s). Nonetheless, the incremental contribution of 7EL segments emerged in various instances, greatly mitigating the effects of salt stress on root and leaf growth and on the quantity of photosynthetic pigments, boosting accumulation of compatible solutes and minimizing the decrease of a powerful antioxidant like ascorbate. The seemingly synergistic effect of 7el1L + 7EL segments/genes made "secondary" RLs able to often exceed cv. OR and equal or better perform than BW lines. Thus, transfer of a suite of genes from halophytic germplasm by use of fine chromosome engineering strategies may well be the way forward to enhance salinity tolerance of glycophytes, even the sensitive DW.
Collapse
Affiliation(s)
- Sana Tounsi
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Debora Giorgi
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Ljiljana Kuzmanović
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Olfa Jrad
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Anna Farina
- ENEA Casaccia Research Center, Department for Sustainability, Biotechnology and Agroindustry Division, Rome, Italy
| | - Alessandra Capoccioni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| | - Rayda Ben Ayed
- Department of Agronomy and Plant Biotechnology, National Institute of Agronomy of Tunisia (INAT), University of Carthage, Tunis, Tunisia
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj-Cédria, Hammam-lif, Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, Sfax, Tunisia
| | - Carla Ceoloni
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Viterbo, Italy
| |
Collapse
|
3
|
Mu Y, Shi L, Tian H, Tian H, Zhang J, Zhao F, Zhang Q, Zhang S, Geng G. Characterization and transformation of TtMYB1 transcription factor from Tritipyrum to improve salt tolerance in wheat. BMC Genomics 2024; 25:163. [PMID: 38336658 PMCID: PMC10854188 DOI: 10.1186/s12864-024-10051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Common wheat (Triticum aestivum L.) is a worldwide cereal crop, which is an integral part of the diets of many countries. In addition, the MYB gene of wheat plays a role in the response to salt stress. RESULTS "Y1805" is a Tritipyrum variety that is relatively tolerant to salt. We used transcriptome analysis to show that the "Y1805" MYB gene was both highly expressed and sensitive to salt stress. Compared with control roots, the level of MYB expression during salt stress was higher, which rapidly decreased to control levels during the recovery process. MYB gene relative expression showed the highest levels in "Y1805" roots during salt stress, with the stems and then leaves being the next highest stressed tissues. The novel MYB gene (TtMYB1) was successfully cloned from "Y1805". It showed a coding sequence length of 783 bp with 95.79% homology with Tel2E01G633100 from Thinopyrum elongatum. TtMYB1 and MYB from Th. elongatum were clustered in the same branch using phylogenetic analysis, which indicated high similarities. The TtMYB1 gene is located in the nucleus. The coleoptile method was employed when a TtMYB1 overexpression vector was used during transformation into "1718" (common wheat). Under high salt stress, TtMYB1 leaves of overexpression lines had decreased wilting, when compared with wild-type (WT) plants. During normal conditions, salt stress, and recovery, the lengths of the roots and the heights of seedlings from the overexpression lines were found to be significantly greater than roots and seedlings of WT plants. In addition, during high salt stress, the overexpression lines showed that proline and soluble sugar levels were higher than that of WT plants, but with lower malondialdehyde levels. Forty-three proteins that interacted with TtMYB1 were identified using the yeast two-hybrid assay. Protein-protein interaction analyses indicated that most were SANT domain-containing and Wd repeat region domain-containing proteins. Among these proteins, ribosomal proteins were the main node. Abiotic stress-related terms (such as "carbonate dehydratase activity", "protein targeting peroxisomes", and "glutathione peroxidase activity") were enriched in GO analysis. In KEGG analysis, "carbohydrate metabolism", "environmental information processing", "genetic information processing", "signaling and cell precursors", and "energy metabolism" pathways were enriched. CONCLUSION The TtMYB1 gene might enhance salt tolerance by increasing proline and soluble sugar content and antioxidase activity in transgenic wheat. It therefore has the potential to enhance high salt tolerance in plants.
Collapse
Affiliation(s)
- Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huan Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Huaizhi Tian
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
- Zunyi Acadamy of Agricultural Sciences, Zunyi, Guizhou, China
| | - Jv Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Fusheng Zhao
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, Guizhou, China.
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
4
|
Liu X, Zhou G, Chen S, Jia Z, Zhang S, He F, Ren M. Genome-wide analysis of the Tritipyrum NAC gene family and the response of TtNAC477 in salt tolerance. BMC PLANT BIOLOGY 2024; 24:40. [PMID: 38195389 PMCID: PMC10775630 DOI: 10.1186/s12870-023-04629-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 11/23/2023] [Indexed: 01/11/2024]
Abstract
NAC transcription factors are widely distributed in the plant kingdom and play an important role in the response to various abiotic stresses in plant species. Tritipyrum, an octoploid derived from hybridization of Triticum aestivum (AABBDD) and Thinopyrum elongatum (EE), is an important genetic resource for integrating the desirable traits of Th. elongatum into wheat. In this study, we investigated the tissue distribution and expression of Tritipyrum NAC genes in the whole genomes of T. aestivum and Th. elongatum after obtaining their complete genome sequences. Based on phylogenetic relationships, conserved motifs, gene synthesis, evolutionary analysis, and expression patterns, we identified and characterized 732 Tritipyrum NAC genes. These genes were divided into six main groups (A, B, C, D, E, and G) based on phylogenetic relationships and evolutionary studies, with members of these groups sharing the same motif composition. The 732 TtNAC genes are widely distributed across 28 chromosomes and include 110 duplicated genes. Gene synthesis analysis indicated that the NAC gene family may have a common ancestor. Transcriptome data and quantitative polymerase chain reaction (qPCR) expression profiles showed 68 TtNAC genes to be highly expressed in response to various salt stress and recovery treatments. Tel3E01T644900 (TtNAC477) was particularly sensitive to salt stress and belongs to the same clade as the salt tolerance genes ANAC019 and ANAC055 in Arabidopsis. Pearson correlation analysis identified 751 genes that correlated positively with expression of TtNAC477, and these genes are enriched in metabolic activities, cellular processes, stimulus responses, and biological regulation. TtNAC477 was found to be highly expressed in roots, stems, and leaves in response to salt stress, as confirmed by real-time PCR. These findings suggest that TtNAC477 is associated with salt tolerance in plants and might serve as a valuable exogenous gene for enhancing salt tolerance in wheat.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Guangyi Zhou
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Songshu Chen
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Zhenzhen Jia
- School of Life Sciences, Guizhou Normal University, Guiyang, 550025, China
| | - Suqin Zhang
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Fang He
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China
| | - Mingjian Ren
- Guizhou Subcenter of National Wheat Improvement Center, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, Agronomy College, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Ding G, Shen L, Dai J, Jackson R, Liu S, Ali M, Sun L, Wen M, Xiao J, Deakin G, Jiang D, Wang XE, Zhou J. The Dissection of Nitrogen Response Traits Using Drone Phenotyping and Dynamic Phenotypic Analysis to Explore N Responsiveness and Associated Genetic Loci in Wheat. PLANT PHENOMICS (WASHINGTON, D.C.) 2023; 5:0128. [PMID: 38148766 PMCID: PMC10750832 DOI: 10.34133/plantphenomics.0128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/23/2023] [Indexed: 12/28/2023]
Abstract
Inefficient nitrogen (N) utilization in agricultural production has led to many negative impacts such as excessive use of N fertilizers, redundant plant growth, greenhouse gases, long-lasting toxicity in ecosystem, and even effect on human health, indicating the importance to optimize N applications in cropping systems. Here, we present a multiseasonal study that focused on measuring phenotypic changes in wheat plants when they were responding to different N treatments under field conditions. Powered by drone-based aerial phenotyping and the AirMeasurer platform, we first quantified 6 N response-related traits as targets using plot-based morphological, spectral, and textural signals collected from 54 winter wheat varieties. Then, we developed dynamic phenotypic analysis using curve fitting to establish profile curves of the traits during the season, which enabled us to compute static phenotypes at key growth stages and dynamic phenotypes (i.e., phenotypic changes) during N response. After that, we combine 12 yield production and N-utilization indices manually measured to produce N efficiency comprehensive scores (NECS), based on which we classified the varieties into 4 N responsiveness (i.e., N-dependent yield increase) groups. The NECS ranking facilitated us to establish a tailored machine learning model for N responsiveness-related varietal classification just using N-response phenotypes with high accuracies. Finally, we employed the Wheat55K SNP Array to map single-nucleotide polymorphisms using N response-related static and dynamic phenotypes, helping us explore genetic components underlying N responsiveness in wheat. In summary, we believe that our work demonstrates valuable advances in N response-related plant research, which could have major implications for improving N sustainability in wheat breeding and production.
Collapse
Affiliation(s)
- Guohui Ding
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Liyan Shen
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Dai
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Robert Jackson
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Shuchen Liu
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Mujahid Ali
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
| | - Li Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Mingxing Wen
- Zhenjiang Institute of Agricultural Science, Jurong, Jiangsu 212400, China
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Greg Deakin
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| | - Dong Jiang
- Regional Technique Innovation Center for Wheat Production, Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture,
Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiu-e Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute,
Nanjing Agricultural University/JCIC-MCP, Nanjing, Jiangsu 210095, China
| | - Ji Zhou
- College of Agriculture, Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies,
Nanjing Agricultural University, Nanjing 210095, China
- Cambridge Crop Research,
National Institute of Agricultural Botany (NIAB), Cambridge CB3 0LE, UK
| |
Collapse
|
6
|
Jin Y, Liao M, Li N, Ma X, Zhang H, Han J, Li D, Yang J, Lu X, Long G, Deng Z, Sheng L. Weighted gene coexpression correlation network analysis reveals the potential molecular regulatory mechanism of citrate and anthocyanin accumulation between postharvest 'Bingtangcheng' and 'Tarocco' blood orange fruit. BMC PLANT BIOLOGY 2023; 23:296. [PMID: 37268922 DOI: 10.1186/s12870-023-04309-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 05/23/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND Organic acids and anthocyanins are the most important compounds for the flavor and nutritional quality of citrus fruit. However, there are few reports on the involvement of co-regulation of citrate and anthocyanin metabolism. Here, we performed a comparative transcriptome analysis to elucidate the genes and pathways involved in both citrate and anthocyanin accumulation in postharvest citrus fruit with 'Tarocco' blood orange (TBO; high accumulation) and 'Bingtangcheng' sweet orange (BTSO; low accumulation). RESULTS A robust core set of 825 DEGs were found to be temporally associated with citrate and anthocyanin accumulation throughout the storage period through transcriptome analysis. Further according to the results of weighted gene coexpression correlation network analysis (WGCNA), the turquoise and brown module was highly positively correlated with both of the content of citrate and anthocyanin, and p-type ATPase (PH8), phosphoenolpyruvate carboxylase kinase (PEPCK), chalcone isomerase (CHI), flavanone 3-hydroxylase (F3H), flavonoid 3'-hydroxylase (F3'H) and glutathione S transferase (GST) were considered key structural genes. Moreover, MYB family transcription factor (PH4), Zinc finger PHD-type transcription factor (CHR4, HAC12), Zinc finger SWIM-type transcription factor (FAR1) and Zinc finger C3H1-type transcription factor (ATC3H64) were considered hub genes related to these structural genes. Further qRT-PCR analysis verified that these transcription factors were highly expressed in TBO fruit and their expression profiles were significantly positively correlated with the structural genes of citrate and anthocyanin metabolism as well as the content of citrate and anthocyanin content. CONCLUSIONS The findings suggest that the CHR4, FAR1, ATC3H64 and HAC12 may be the new transcription regulators participate in controlling the level of citrate and anthocyanin in postharvest TBO fruit in addition to PH4. These results may providing new insight into the regulation mechanism of citrate and anthocyanin accumulation in citrus fruit.
Collapse
Affiliation(s)
- Yan Jin
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Manyu Liao
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Na Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaoqian Ma
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Huimin Zhang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Jian Han
- Hunan Horticultural Research Institute, Changsha, CS, China
| | - Dazhi Li
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Junfeng Yang
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Xiaopeng Lu
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Guiyou Long
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ziniu Deng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China
| | - Ling Sheng
- National Center for Citrus Improvement Changsha, College of Horticulture, Hunan Agricultural University, Changsha, CS, China.
| |
Collapse
|
7
|
Yang Z, Mu Y, Wang Y, He F, Shi L, Fang Z, Zhang J, Zhang Q, Geng G, Zhang S. Characterization of a Novel TtLEA2 Gene From Tritipyrum and Its Transformation in Wheat to Enhance Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:830848. [PMID: 35444677 PMCID: PMC9014267 DOI: 10.3389/fpls.2022.830848] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are critical in helping plants cope with salt stress. "Y1805" is a salt-tolerant Tritipyrum. We identified a "Y1805"-specific LEA gene that was expressed highly and sensitively under salt stress using transcriptome analysis. The novel group 2 LEA gene (TtLEA2-1) was cloned from "Y1805." TtLEA2-1 contained a 453 bp open reading frame encoding an 151-amino-acid protein that showed maximum sequence identity (77.00%) with Thinopyrum elongatum by phylogenetic analysis. It was mainly found to be expressed highly in the roots by qRT-PCR analysis and was located in the whole cell. Forty-eight candidate proteins believed to interact with TtLEA2-1 were confirmed by yeast two-hybrid analysis. These interacting proteins were mainly enriched in "environmental information processing," "glycan biosynthesis and metabolism," and "carbohydrate metabolism." Protein-protein interaction analysis indicated that the translation-related 40S ribosomal protein SA was the central node. An efficient wheat transformation system has been established. A coleoptile length of 2 cm, an Agrobacteria cell density of 0.55-0.60 OD600, and 15 KPa vacuum pressure were ideal for common wheat transformation, with an efficiency of up to 43.15%. Overexpression of TaLEA2-1 in wheat "1718" led to greater height, stronger roots, and higher catalase activity than in wild type seedlings. TaLEA2-1 conferred enhanced salt tolerance in transgenic wheat and may be a valuable gene for genetic modification in crops.
Collapse
Affiliation(s)
- Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhongming Fang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jun Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Guangdong Geng,
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
- Suqin Zhang,
| |
Collapse
|