1
|
Li X, Zheng J, Su J, Wang L, Luan L, Wang T, Bai F, Zhong Q, Gong Q. Myotubularin 2 interacts with SEC23A and negatively regulates autophagy at ER exit sites in Arabidopsis. Autophagy 2025; 21:141-159. [PMID: 39177202 DOI: 10.1080/15548627.2024.2394302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 08/24/2024] Open
Abstract
Starvation- or stress-induced phosphatidylinositol 3-phosphate (PtdIns3P/PI3P) production at the endoplasmic reticulum (ER) subdomains organizes phagophore assembly and autophagosome formation. Coat protein complex II (COPII) vesicles budding from ER exit site (ERES) also contribute to autophagosome formation. Whether any PtdIns3P phosphatase functions at ERES to inhibit macroautophagy/autophagy is unknown. Here we report Myotubularin 2 (MTM2) of Arabidopsis as a PtdIns3P phosphatase that localizes to ERES and negatively regulates autophagy. MTM2 binds PtdIns3P with its PH-GRAM domain in vitro and acts toward PtdIns3P in vivo. Transiently expressed MTM2 colocalizes with ATG14b, a subunit of the phosphatidylinositol 3-kinase (PtdIns3K) complex, and overexpression of MTM2 blocks autophagic flux and causes over-accumulation of ATG18a, ATG5, and ATG8a. The mtm2 mutant has higher levels of autophagy and is more tolerant to starvation, whereas MTM2 overexpression leads to reduced autophagy and sensitivity to starvation. The phenotypes of mtm2 are suppressed by ATG2 mutation, suggesting that MTM2 acts upstream of ATG2. Importantly, MTM2 does not affect the endosomal functions of PtdIns3P. Instead, MTM2 specifically colocalizes with COPII coat proteins and is cradled by the ERES-defining protein SEC16. MTM2 interacts with SEC23A with its phosphatase domain and inhibits COPII-mediated protein secretion. Finally, a role for MTM2 in salt stress response is uncovered. mtm2 resembles the halophyte Thellungiella salsuginea in its efficient vacuolar compartmentation of Na+, maintenance of chloroplast integrity, and timely regulation of autophagy-related genes. Our findings reveal a balance between PtdIns3P synthesis and turnover in autophagosome formation, and provide a new link between autophagy and COPII function.Abbreviations: ATG: autophagy related; BFA: brefeldin A; BiFC: bimolecular fluorescence complementation; CHX: cycloheximide; ConA: concanamycin A; COPII: coat protein complex II; ER: endoplasmic reticulum; ERES: ER exit site; MS: Murashige and Skoog; MTM: myotubularin; MVB: multivesicular body; PAS: phagophore assembly site; PI: phosphoinositide; TEM: transmission electron microscopy; WT: wild-type.
Collapse
Affiliation(s)
- Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Jing Zheng
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Jing Su
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Lin Wang
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Lin Luan
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tianjin, P. R. China
| | - Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Fang Bai
- Shanghai Institute for Advanced Immunochemical Studies, School of Life Science and Technology, ShanghaiTech University, Shanghai, P. R. China
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, P. R. China
| |
Collapse
|
2
|
Jiang YY, Kumar S, Turkewitz AP. The secretory pathway in Tetrahymena is organized for efficient constitutive secretion at ciliary pockets. iScience 2024; 27:111123. [PMID: 39498308 PMCID: PMC11532953 DOI: 10.1016/j.isci.2024.111123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/19/2024] [Accepted: 10/04/2024] [Indexed: 11/07/2024] Open
Abstract
In ciliates, membrane cisternae called alveoli interpose between the plasma membrane and the cytoplasm, posing a barrier to endocytic and exocytic membrane trafficking. One exception to this barrier is plasma membrane invaginations called parasomal sacs, which are adjacent to ciliary basal bodies. By following a fluorescent secretory marker called ESCargo, we imaged secretory compartments and secretion in these cells. A cortical endoplasmic reticulum is organized along cytoskeletal ridges and cradles a cohort of mitochondria. One cohort of Golgi are highly mobile in a subcortical layer, while the remainder appear stably positioned at periodic sites close to basal bodies, except near the cell tip where, interestingly, Golgi are more closely spaced. Strikingly, ESCargo secretion was readily visible at positions aligned with basal bodies and parasomal sacs. Thus peri-ciliary zones in ciliates are organized, like ciliary pockets in the highly unrelated trypanosomids, as unique hubs of exo-endocytic trafficking.
Collapse
Affiliation(s)
- Yu-Yang Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
- AbCellera Boston, Inc. 91 Mystic St, Arlington, MA 02474, USA
| | - Santosh Kumar
- National Centre for Cell Science, NCCS Complex, Savitribai Phule Pune University Campus, Ganeshkhind Road, Pune, Maharashtra State 411007, India
| | - Aaron P. Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
3
|
Chung KP, Frieboese D, Waltz F, Engel BD, Bock R. Identification and characterization of the COPII vesicle-forming GTPase Sar1 in Chlamydomonas. PLANT DIRECT 2024; 8:e614. [PMID: 38887666 PMCID: PMC11180857 DOI: 10.1002/pld3.614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/29/2024] [Indexed: 06/20/2024]
Abstract
Eukaryotic cells are highly compartmentalized, requiring elaborate transport mechanisms to facilitate the movement of proteins between membrane-bound compartments. Most proteins synthesized in the endoplasmic reticulum (ER) are transported to the Golgi apparatus through COPII-mediated vesicular trafficking. Sar1, a small GTPase that facilitates the formation of COPII vesicles, plays a critical role in the early steps of this protein secretory pathway. Sar1 was characterized in yeast, animals and plants, but no Sar1 homolog has been identified and functionally analyzed in algae. Here we identified a putative Sar1 homolog (CrSar1) in the model green alga Chlamydomonas reinhardtii through amino acid sequence similarity. We employed site-directed mutagenesis to generate a dominant-negative mutant of CrSar1 (CrSar1DN). Using protein secretion assays, we demonstrate the inhibitory effect of CrSar1DN on protein secretion. However, different from previously studied organisms, ectopic expression of CrSar1DN did not result in collapse of the ER-Golgi interface in Chlamydomonas. Nonetheless, our data suggest a largely conserved role of CrSar1 in the ER-to-Golgi protein secretory pathway in green algae.
Collapse
Affiliation(s)
- Kin Pan Chung
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | - Daniel Frieboese
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| | | | | | - Ralph Bock
- Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdamGermany
| |
Collapse
|
4
|
McGinness AJ, Brooks SA, Strasser R, Schoberer J, Kriechbaumer V. Suborganellar resolution imaging for the localisation of human glycosylation enzymes in tobacco Golgi bodies. J Microsc 2024. [PMID: 38687244 DOI: 10.1111/jmi.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/10/2024] [Accepted: 04/18/2024] [Indexed: 05/02/2024]
Abstract
Plant cells are a capable system for producing economically and therapeutically important proteins for a variety of applications, and are considered a safer production system than some existing hosts such as bacteria or yeasts. However, plants do not perform protein modifications in the same manner as mammalian cells do. This can impact on protein functionality for plant-produced human therapeutics. This obstacle can be overcome by creating a plant-based system capable of 'humanising' proteins of interest resulting in a glycosylation profile of synthetic plant-produced proteins as it would occur in mammalian systems. For this, the human glycosylation enzymes (HuGEs) involved in N-linked glycosylation N-acetylglucosaminyltransferase IV and V (GNTIV and GNTV), β-1,4-galactosyltransferase (B4GALT1), and α-2,6-sialyltransferase (ST6GAL) were expressed in plant cells. For these enzymes to carry out the stepwise glycosylation functions, they need to localise to late Golgi body cisternae. This was achieved by a protein targeting strategy of replacing the mammalian Golgi targeting domains (Cytoplasmic-Transmembrane-Stem (CTS) regions) with plant-specific ones. Using high-resolution and dynamic confocal microscopy, we show that GNTIV and GNTV were successfully targeted to the medial-Golgi cisternae while ST6GAL and B4GALT1 were targeted to trans-Golgi cisternae. Plant cells are a promising system to produce human therapeutics for example proteins used in enzyme replacement therapies. Plants can provide safer and cheaper alternatives to existing expression systems such as mammalian cell culture, bacteria or yeast. An important factor for the functionality of therapeutic proteins though are protein modifications specific to human cells. However, plants do not perform protein modifications in the same manner as human cells do. Therefore, plant cells need to be genetically modified to mimic human protein modifications patterns. The modification of importance here, is called N-linked glycosylation and adds specific sugar molecules onto the proteins. Here we show the expression of four human glycosylation enzymes, which are required for N-linked glycosylation, in plant cells. In addition, as these protein modifications are carried out in cells resembling a factory production line, it is important that the human glycosylation enzymes be placed in the correct cellular compartments and in the correct order. This is carried out in Golgi bodies. Golgi bodies are composed of several defined stacks termed cis-, medial and trans-Golgi body stacks. For correct protein function, two of these human glycosylation enzymes need to be placed in the medial-Golgi attacks and the other two in the trans-Golgi stacks. Using high-resolution laser microscopy in live plant cells, we show here that the human glycosylation enzymes are sent within the cells to the correct Golgi body stacks. These are first steps to modify plant cells in order to produce human therapeutics.
Collapse
Affiliation(s)
- Alastair J McGinness
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Susan A Brooks
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Richard Strasser
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Jennifer Schoberer
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Verena Kriechbaumer
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
- Centre for Bioimaging, Oxford Brookes University, Oxford, UK
| |
Collapse
|
5
|
Wang P, Duckney P, Gao E, Hussey PJ, Kriechbaumer V, Li C, Zang J, Zhang T. Keep in contact: multiple roles of endoplasmic reticulum-membrane contact sites and the organelle interaction network in plants. THE NEW PHYTOLOGIST 2023; 238:482-499. [PMID: 36651025 DOI: 10.1111/nph.18745] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Functional regulation and structural maintenance of the different organelles in plants contribute directly to plant development, reproduction and stress responses. To ensure these activities take place effectively, cells have evolved an interconnected network amongst various subcellular compartments, regulating rapid signal transduction and the exchange of biomaterial. Many proteins that regulate membrane connections have recently been identified in plants, and this is the first step in elucidating both the mechanism and function of these connections. Amongst all organelles, the endoplasmic reticulum is the key structure, which likely links most of the different subcellular compartments through membrane contact sites (MCS) and the ER-PM contact sites (EPCS) have been the most intensely studied in plants. However, the molecular composition and function of plant MCS are being found to be different from other eukaryotic systems. In this article, we will summarise the most recent advances in this field and discuss the mechanism and biological relevance of these essential links in plants.
Collapse
Affiliation(s)
- Pengwei Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick Duckney
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Erlin Gao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Patrick J Hussey
- Department of Biosciences, Durham University, South Road, Durham, DH1 3LE, UK
| | - Verena Kriechbaumer
- Endomembrane Structure and Function Research Group, Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, OX3 0BP, UK
| | - Chengyang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Jingze Zang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Tong Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
6
|
Zouhar J, Cao W, Shen J, Rojo E. Retrograde transport in plants: Circular economy in the endomembrane system. Eur J Cell Biol 2023; 102:151309. [PMID: 36933283 DOI: 10.1016/j.ejcb.2023.151309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/09/2023] [Accepted: 03/11/2023] [Indexed: 03/14/2023] Open
Abstract
The study of endomembrane trafficking is crucial for understanding how cells and whole organisms function. Moreover, there is a special interest in investigating endomembrane trafficking in plants, given its role in transport and accumulation of seed storage proteins and in secretion of cell wall material, arguably the two most essential commodities obtained from crops. The mechanisms of anterograde transport in the biosynthetic and endocytic pathways of plants have been thoroughly discussed in recent reviews, but, comparatively, retrograde trafficking pathways have received less attention. Retrograde trafficking is essential to recover membranes, retrieve proteins that have escaped from their intended localization, maintain homeostasis in maturing compartments, and recycle trafficking machinery for its reuse in anterograde transport reactions. Here, we review the current understanding on retrograde trafficking pathways in the endomembrane system of plants, discussing their integration with anterograde transport routes, describing conserved and plant-specific retrieval mechanisms at play, highlighting contentious issues and identifying open questions for future research.
Collapse
Affiliation(s)
- Jan Zouhar
- Central European Institute of Technology, Mendel University in Brno, CZ-61300 Brno, Czech Republic.
| | - Wenhan Cao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China
| | - Jinbo Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 311300 Hangzhou, China.
| | - Enrique Rojo
- Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Cantoblanco, E-28049 Madrid, Spain.
| |
Collapse
|
7
|
Ito Y, Uemura T. Super resolution live imaging: The key for unveiling the true dynamics of membrane traffic around the Golgi apparatus in plant cells. FRONTIERS IN PLANT SCIENCE 2022; 13:1100757. [PMID: 36618665 PMCID: PMC9818705 DOI: 10.3389/fpls.2022.1100757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
In contrast to the relatively static image of the plants, the world inside each cell is surprisingly dynamic. Membrane-bounded organelles move actively on the cytoskeletons and exchange materials by vesicles, tubules, or direct contact between each other. In order to understand what is happening during those events, it is essential to visualize the working components in vivo. After the breakthrough made by the application of fluorescent proteins, the development of light microscopy enabled many discoveries in cell biology, including those about the membrane traffic in plant cells. Especially, super-resolution microscopy, which is becoming more and more accessible, is now one of the most powerful techniques. However, although the spatial resolution has improved a lot, there are still some difficulties in terms of the temporal resolution, which is also a crucial parameter for the visualization of the living nature of the intracellular structures. In this review, we will introduce the super resolution microscopy developed especially for live-cell imaging with high temporal resolution, and show some examples that were made by this tool in plant membrane research.
Collapse
Affiliation(s)
- Yoko Ito
- Institute for Human Life Science, Ochanomizu University, Tokyo, Japan
| | - Tomohiro Uemura
- Graduate School of Humanities and Sciences, Ochanomizu University, Tokyo, Japan
| |
Collapse
|