1
|
Shi Y, Lu T, Lai S, Li S, Zhang L, Liu R, Ouyang L, Zhao X, Jiang Y, Yan Z, Zhang J, Miao B. Rosa rugosa R2R3-MYB transcription factors RrMYB12 and RrMYB111 regulate the accumulation of flavonols and anthocyanins. FRONTIERS IN PLANT SCIENCE 2024; 15:1477278. [PMID: 39741671 PMCID: PMC11685124 DOI: 10.3389/fpls.2024.1477278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/02/2024] [Indexed: 01/03/2025]
Abstract
Roses (Rosa rugosa) are a famous flower with high ornamental and economic value. But the petals of roses are usually pink and purple, which restricted its application in garden settings. Flavonols and anthocyanins are crucial secondary metabolites related to flower pigmentation in plants. While MYB transcription factors involved in the biosynthesis pathway of anthocyanins have been identified in roses, the functional characterization of the MYB transcription factor regulating flavonol synthesis in R. rugosa remains unexplored. In this study, we isolated and characterized the R2R3-MYB transcription factors RrMYB12 and RrMYB111 involved in regulation of the flavonol biosynthetic pathway from R. rugosa. The bioinformatics analysis indicated that both the RrMYB12 and RrMYB111 belong to the R2R3-MYB subgroup 7 family. qRT-PCR analysis showed that RrMYB12 and RrMYB111 were expressed at low levels in roots and flowers. And transactivation activity assay indicated that RrMYB12 and RrMYB111 were transcriptional activators. The overexpression of RrMYB12 and RrMYB111 in tobacco resulted in an elevation of flavonol levels and a reduction in anthocyanin levels in flowers due to the upregulation of structural genes involved in flavonol synthesis, while the biosynthesis genes for the anthocyanin pathway were significantly downregulated. The transient reporter assay demonstrated that RrMYB12 exhibited strong activation of the promoters of RrCHS and RrFLS in Nicotiana benthamiana leaves following transient transformation. Furthermore, it was observed that RrMYBs displayed binding specificity to the promoter region of CsFLS.The functional characterization of the flavonol synthesis regulatory factors RrMYB12 and RrMYB111 offers a deeper understanding of the regulatory mechanism governing flavonol biosynthesis in roses, while also presenting an effective tool for genetic manipulation aimed at creating new varieties.
Collapse
Affiliation(s)
- Yufeng Shi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Taoran Lu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Sanyan Lai
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Song Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Ling Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Rong Liu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Lin Ouyang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Xinxin Zhao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Yuqin Jiang
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Zhen Yan
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Ju Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Baohe Miao
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
- Chengdu National Agricultural Science and Technology Center, Chengdu, China
| |
Collapse
|
2
|
Zhang Z, Hu W, Yu A, Bi H, Wang J, Wang X, Kuang H, Wang M. Physicochemical properties, health benefits, and applications of the polysaccharides from Rosa rugosa Thunb.: A review. Int J Biol Macromol 2024; 282:136975. [PMID: 39476919 DOI: 10.1016/j.ijbiomac.2024.136975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/01/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
Rosa rugosa Thunb. (R. rugosa) has been used as food and medicine and not just as ornamental plant for nearly a thousand years, its nutritional and medicinal value have been recognized by people. It contains a variety of biological active ingredients that are beneficial to the human body. R. rugosa polysaccharides are also one of the main bioactive ingredients, which have many health benefits such as anti-diabetes, antioxidation, anti-inflammation, anti-tumour, moisture-preserving and anti-alcoholic liver disease. This review summarizes the extraction, purification, structural characteristics, health benefits, and structure-activity relationships of R. rugosa polysaccharides. In addition, current and potential applications of R. rugosa polysaccharides are analyzed and supplemented, hoping to provide some valuable insights for further research and development of functional food additives, nutritional supplements, additives for daily chemical products, and even pharmaceuticals.
Collapse
Affiliation(s)
- Zhaojiong Zhang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Wenjing Hu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Aiqi Yu
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haizheng Bi
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Jingyuan Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Xingyu Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Haixue Kuang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China
| | - Meng Wang
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150000, China.
| |
Collapse
|
3
|
Qiao Q, Gao Y, Liu Q. Metabolic and molecular mechanisms of spine color formation in Chinese red chestnut. FRONTIERS IN PLANT SCIENCE 2024; 15:1377899. [PMID: 38835869 PMCID: PMC11148441 DOI: 10.3389/fpls.2024.1377899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 04/11/2024] [Indexed: 06/06/2024]
Abstract
The spines of Chinese red chestnut are red and the depth of their color gradually increases with maturity. To identify the anthocyanin types and synthesis pathways in red chestnut and to identify the key genes regulating the anthocyanin biosynthesis pathway, we obtained and analyzed the transcriptome and anthocyanin metabolism of red chestnut and its control variety with green spines at 3 different periods. GO and KEGG analyses revealed that photosynthesis was more highly enriched in green spines compared with red spines, while processes related to defense and metabolism regulation were more highly enriched in red spines. The analysis showed that the change in spine color promoted photoprotection in red chestnut, especially at the early growth stage, which resulted in the accumulation of differentially expressed genes involved in the defense metabolic pathway. The metabolome results revealed 6 anthocyanins in red spines. Moreover, red spines exhibited high levels of cyanidin, peonidin and pelargonidin and low levels of delphinidin, petunidin and malvidin. Compared with those in the control group, the levels of cyanidin, peonidin, pelargonidin and malvidin in red spines were significantly increased, indicating that the cyanidin and pelargonidin pathways were enriched in the synthesis of anthocyanins in red spines, whereas the delphinidin pathways were inhibited and mostly transformed into malvidin. During the process of flower pigment synthesis, the expression of the CHS, CHI, F3H, CYP75A, CYP75B1, DFR and ANS genes clearly increased, that of CYP73A decreased obviously, and that of PAL, 4CL and LAR both increased and decreased. Notably, the findings revealed that the synthesized anthocyanin can be converted into anthocyanidin or epicatechin. In red spines, the upregulation of BZ1 gene expression increases the corresponding anthocyanidin content, and the upregulation of the ANR gene also promotes the conversion of anthocyanin to epicatechin. The transcription factors involved in color formation included 4 WRKYs.
Collapse
Affiliation(s)
- Qian Qiao
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| | - Yun Gao
- College of Plant Protection, Shandong Agricultural University, Taian, Shandong, China
| | - Qingzhong Liu
- Shandong Key Laboratory of Fruit Biotechnology Breeding, Shandong Institute of Pomology, Taian, Shandong, China
| |
Collapse
|
4
|
Abla M, Cai Y, Gao L, Wu J, Yang L. Changes in the antioxidant and anti-inflammatory activities of Rosa rugosa 'Mohong' during fermentation. Heliyon 2024; 10:e25982. [PMID: 38434381 PMCID: PMC10904242 DOI: 10.1016/j.heliyon.2024.e25982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/25/2024] [Accepted: 02/06/2024] [Indexed: 03/05/2024] Open
Abstract
Fermented rose petals are a traditional delicacy of the Dali Bai community in Yunnan, China. Fermentation enhances the quality and nutritional value of roses, as well as their efficacy, by increasing the levels of phenolic compounds. This study aimed to investigate the significant variations in four active compounds throughout the traditional fermentation process. Four compounds in Rosa rugosa 'Mohong' were examined, and significant variations among polyphenols and antioxidant and anti-inflammatory activities were observed. These variations were studied during fermentation by Saccharomyces rouxii at varying temperatures and durations. Moreover, the results showed that gallic acid and syringic acid content significantly increased (P < 0.05) with a rise in temperature from 20°C-35 °C during fermentation. Simultaneously, rutin and quercetin levels significantly decreased (P < 0.05) at all four temperatures throughout the five periods. The antioxidant and anti-inflammatory activities of fermented R. rugosa 'Mohong' methanol extracts were dose-dependent. Our results provide valuable insights into optimizing the processing scale and quality control of fermented rose products.
Collapse
Affiliation(s)
- Merhaba Abla
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Yueyue Cai
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Lu Gao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
| | - Jingsong Wu
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
| | - Lixin Yang
- Key Laboratory of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, Yunnan, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, 650504, Yunnan, China
- Center for Biodiversity and Indigenous Knowledge, Kunming, 650034, Yunnan, China
| |
Collapse
|
5
|
Cai O, Zhang H, Yang L, Wu H, Qin M, Yao W, Huang F, Li L, Lin S. Integrated Transcriptome and Metabolome Analyses Reveal Bamboo Culm Color Formation Mechanisms Involved in Anthocyanin Biosynthetic in Phyllostachys nigra. Int J Mol Sci 2024; 25:1738. [PMID: 38339012 PMCID: PMC10855043 DOI: 10.3390/ijms25031738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Phyllostachys nigra has green young culms (S1) and purple black mature culms (S4). Anthocyanins are the principal pigment responsible for color presentation in ornamental plants. We employ a multi-omics approach to investigate the regulatory mechanisms of anthocyanins in Ph. nigra. Firstly, we found that the pigments of the culm of Ph. nigra accumulated only in one to four layers of cells below the epidermis. The levels of total anthocyanins and total flavonoids gradually increased during the process of bamboo culm color formation. Metabolomics analysis indicated that the predominant pigment metabolites observed were petunidin 3-O-glucoside and malvidin O-hexoside, exhibiting a significant increase of up to 9.36-fold and 13.23-fold, respectively, during pigmentation of Ph. nigra culm. Transcriptomics sequencing has revealed that genes involved in flavonoid biosynthesis, phenylpropanoid biosynthesis, and starch and sucrose metabolism pathways were significantly enriched, leading to color formation. A total of 62 differentially expressed structural genes associated with anthocyanin synthesis were identified. Notably, PnANS2, PnUFGT2, PnCHI2, and PnCHS1 showed significant correlations with anthocyanin metabolites. Additionally, certain transcription factors such as PnMYB6 and PnMYB1 showed significant positive or negative correlations with anthocyanins. With the accumulation of sucrose, the expression of PnMYB6 is enhanced, which in turn triggers the expression of anthocyanin biosynthesis genes. Based on these findings, we propose that these key genes primarily regulate the anthocyanin synthesis pathway in the culm and contribute to the accumulation of anthocyanin, ultimately resulting in the purple-black coloration of Ph. nigra.
Collapse
Affiliation(s)
- Ou Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hanjiao Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Lu Yang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Hongyu Wu
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Min Qin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Feiyi Huang
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Long Li
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Shuyan Lin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China; (O.C.); (H.Z.); (L.Y.); (H.W.); (M.Q.); (W.Y.); (F.H.)
- Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
- College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Zeng HT, Zheng T, Tang Q, Xu H, Chen M. Integrative metabolome and transcriptome analyses reveal the coloration mechanism in Camellia oleifera petals with different color. BMC PLANT BIOLOGY 2024; 24:19. [PMID: 38166635 PMCID: PMC10759395 DOI: 10.1186/s12870-023-04699-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Camellia olelfera petals are colorful, and have high ornamental value. However, the color formation mechanism of C. olelfera petals with different color is still unclear. In our study, WGCNA method was applied to integrate metabolites and transcriptomes to investigate the coloration mechanism of four C. olelfera cultivars with different petal colors. RESULTS Here, a total of 372 flavonoids were identified (including 27 anthocyanins), and 13 anthocyanins were significantly differentially accumulated in C. olelfera petals. Among them, cyanidin-3-O-(6''-O-p-Coumaroyl) glucoside was the main color constituent in pink petals, cyanidin-3-O-glucoside, cyanidin-3-O-galactoside, cyanidin-3-O-rutinoside, and cyanidin-3-O-(6''-O-malonyl) glucoside were the main contributors to candy pink petals, and peonidin-3-O-glucoside was the important color substance responsible for the red petals of C. oleifera. Furthermore, six structural genes (Co4CL1, CoF3H1, CoF3'H, CoANS, CoUGT75C1-4, and CoUGT75C1-5), three MYBs (CoMYB1, CoMYB4, and CoMYB44-3), three bHLHs (CobHLH30, CobHLH 77, and CobHLH 79-1), and two WRKYs (CoWRKY7 and CoWRKY22) could be identified candidate genes related to anthocyanins biosynthesis and accumulation, and lead to the pink and red phenotypes. The regulatory network of differentially accumulated anthocyanins and the anthocyanins related genes in C. olelfera petals were established. CONCLUSIONS These findings elucidate the molecular basis of the coloration mechanisms of pink and red color in C. olelfera petals, and provided valuable target genes for future improvement of petals color in C. olelfera.
Collapse
Affiliation(s)
- Hai-Tao Zeng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Tao Zheng
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China.
| | - Qi Tang
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Hao Xu
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| | - Mengjiao Chen
- College of Biology Science and Engineering, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), Shaanxi University of Technology, Shaanxi Province Key Laboratory of Bio-Resources, Hanzhong, 723001, Shaanxi, China
| |
Collapse
|
7
|
Guan L, Liu J, Wang R, Mu Y, Sun T, Wang L, Zhao Y, Zhu N, Ji X, Lu Y, Wang Y. Metabolome and Transcriptome Analyses Reveal Flower Color Differentiation Mechanisms in Various Sophora japonica L. Petal Types. BIOLOGY 2023; 12:1466. [PMID: 38132292 PMCID: PMC10740404 DOI: 10.3390/biology12121466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023]
Abstract
Sophora japonica L. is an important landscaping and ornamental tree species throughout southern and northern parts of China. The most common color of S. japonica petals is yellow and white. In this study, S. japonica flower color mutants with yellow and white flag petals and light purple-red wing and keel petals were used for transcriptomics and metabolomics analyses. To investigate the underlying mechanisms of flower color variation in S. japonica 'AM' mutant, 36 anthocyanin metabolites were screened in the anthocyanin-targeting metabolome. The results demonstrated that cyanidins such as cyanidin-3-O-glucoside and cyanidin-3-O-rutinoside in the 'AM' mutant were the key metabolites responsible for the red color of the wing and keel petals. Transcriptome sequencing and differentially expressed gene (DEG) analysis identified the key structural genes and transcription factors related to anthocyanin biosynthesis. Among these, F3'5'H, ANS, UFGT79B1, bHLH, and WRKY expression was significantly correlated with the cyanidin-type anthocyanins (key regulatory factors affecting anthocyanin biosynthesis) in the flag, wing, and keel petals in S. japonica at various flower development stages.
Collapse
Affiliation(s)
- Lingshan Guan
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Jinshi Liu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Ruilong Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- College of Forestry, Shandong Agricultural University, Tai’an 271018, China
| | - Yanjuan Mu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Tao Sun
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Lili Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yunchao Zhao
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Nana Zhu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
- State-Owned Yishan Forest Farm in Yishui County, Linyi 276400, China
| | - Xinyue Ji
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Wang
- Key Laboratory of National Forestry and Grassland Administration on Conservation and Utilization of Warm Temperate Zone Forest and Grass Germplasm Resources, Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| |
Collapse
|