1
|
Deng Y, Wu W, Huang X, Yang X, Yu Y, Zhang Z, Hu Z, Zhou X, Zhou K, Liu Y, Zhang L. Characterization of rhizosphere bacterial communities in oilseed rape cultivars with different susceptibility to Plasmodiophora brassicae infection. FRONTIERS IN PLANT SCIENCE 2025; 15:1496770. [PMID: 39834703 PMCID: PMC11743679 DOI: 10.3389/fpls.2024.1496770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/02/2024] [Indexed: 01/22/2025]
Abstract
Rhizosphere microbiomes are constantly mobilized during plant-pathogen interactions, and this, in turn, affects their interactions. However, few studies have examined the activities of rhizosphere microbiomes in plants with different susceptibilities to soil-borne pathogens, especially those that cause clubroot disease. In this study, we compared the rhizosphere bacterial community in response to infection of Plasmodiophora brassicae among the four different clubroot susceptibility cultivars of oilseed rape (Brassica napus). Our results revealed obvious differences in the responses of rhizosphere bacterial community to the P. brassicae infection between the four cultivars of oilseed rape. Several bacterial genera that are associated with the nitrogen cycle, including Limnobacter, Thiobacillus, Anaeromyxobacter, Nitrosomonas, Tumebacillus, and Halomonas, showed significantly different changes between susceptible and resistant cultivars in the presence of P. brassicae infection. Moreover, increased connectedness and robustness were exhibited in the rhizosphere bacterial community co-occurrence network in clubroot-susceptible cultivars that were infected with P. brassicae, while only slight changes were observed in clubroot-resistant cultivars. Metagenomic analysis of microbial metabolism also indicated differences in the rhizosphere bacterial community between susceptible and resistant cultivars that were infected with P. brassicae. Functional analysis of the nitrogen cycle showed that genes related to nitrification (nxrB) were upregulated in susceptible cultivars, while genes related to assimilatory nitrate reduction (nasA, narB, and nirA) were upregulated in resistant cultivars that were infected with P. brassicae. These findings indicate that the synthesis and assimilation process of NO3 - content were promoted in susceptible and resistant cultivars, respectively. Our study revealed differences in the characteristics of rhizosphere bacterial communities in response to P. brassicae infection between clubroot-susceptible and clubroot-resistant cultivars as well as the potential impact of these differences on the plant-P. brassicae interaction.
Collapse
Affiliation(s)
- Yue Deng
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Wenxian Wu
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoqing Huang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Xiaoxiang Yang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Yaoyin Yu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zhongmei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Zijin Hu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiquan Zhou
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kang Zhou
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, Fuyang Normal University, Fuyang, China
- Anhui Province Key Laboratory of Embryo Development and Reproductive Regulation, Fuyang Normal University, Fuyang, China
| | - Yong Liu
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| | - Lei Zhang
- Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Key Laboratory of Integrated Pest Management on Crops in Southwest, Ministry of Agriculture and Rural Affairs, Chengdu, China
| |
Collapse
|
2
|
Wang H, Zhang J, Wang Y, Fang B, Ge W, Wang X, Zou J, Ji R. Transcriptome Analysis of Chinese Cabbage Infected with Plasmodiophora Brassicae in the Primary Stage. Sci Rep 2024; 14:26180. [PMID: 39477989 PMCID: PMC11525481 DOI: 10.1038/s41598-024-76634-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 10/15/2024] [Indexed: 11/02/2024] Open
Abstract
Clubroot disease caused by the infection of Plasmodiophora brassicae is widespread in China, and significantly reduces the yield of Chinese cabbage (Brassica rapa L. ssp. pekinensis). However, the resistance mechanism of Chinese cabbage against clubroot disease is still unclear. It is important to exploit the key genes that response to early infection of P. brassicae. In this study, it was found that zoospores were firstly invaded hair roots on the 8th day after inoculating with 1 × 107 spores/mL P. brassicae. Transcriptome analysis found that the early interaction between Chinese cabbage and P. brassicae caused the significant expression change of some defense genes, such as NBS-LRRs and pathogenesis-related genes, etc. The above results were verified by quantitative reverse-transcription polymerase chain reaction (qRT-PCR). Otherwise, peroxidase (POD) salicylic acid (SA) and jasmonic acid (JA) were also found to be important signal molecules in the resistance to clubroot disease in Chinese cabbage. This study provides important clues for understanding the resistance mechanism of Chinese cabbage against clubroot disease.
Collapse
Affiliation(s)
- Huihui Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jing Zhang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yilian Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
- Liaoning Academy of Agricultural Sciences, Vegetable Research Institute, Shenyang, 110161, Liaoning, China
| | - Bing Fang
- Foreign language teaching department, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Wenjie Ge
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Xinlei Wang
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jiawei Zou
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Ruiqin Ji
- Liaoning Key Laboratory of Genetics and Breeding for Cruciferous Vegetable Crops, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
3
|
Tang W, Tang Z, Liu H, Lu J, Du Q, Tian H, Li J. Xanthohumol and echinocystic acid induces PSTVd tolerance in tomato. PLANT DIRECT 2024; 8:e612. [PMID: 38911016 PMCID: PMC11190350 DOI: 10.1002/pld3.612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/25/2024]
Abstract
Tomato is a popular vegetable worldwide; its production is highly threatened by infection with the potato spindle tuber viroid (PSTVd). We obtained the full-length genome sequence of previously conserved PSTVd and inoculated it on four genotypes of semi-cultivated tomatoes selected from a local tomato germplasm resource. SC-5, which is a PSTVd-resistant genotype, and SC-96, which is a PSTVd-sensitive genotype, were identified by detecting the fruit yield, plant growth, biomass accumulation, physiological indices, and PSTVd genome titer after PSTVd inoculation. A non-target metabolomics study was conducted on PSTVd-infected and control SC-5 to identify potential anti-PSTVd metabolites. The platform of liquid chromatography-mass spectrometry detected 158 or 123 differential regulated metabolites in modes of positive ion or negative ion. Principal component analysis revealed a clear separation of the global metabolite profile between PSTVd-infected leaves and control regardless of the detection mode. The potential anti-PSTVd compounds, xanthohumol, oxalicine B, indole-3-carbinol, and rosmarinic acid were significantly upregulated in positive ion mode, whereas echinocystic acid, chlorogenic acid, and 5-acetylsalicylic acid were upregulated in negative ion mode. Xanthohumol and echinocystic acid were detected as the most upregulated metabolites and were exogenously applied on PSTVd-diseased SC-96 seedlings. Both xanthohumol and echinocystic acid had instant and long-term inhibition effect on PSTVd titer. The highest reduction of disease symptom was induced by 2.6 mg/L of xanthohumol and 2.0 mg/L of echinocystic acid after 10 days of leaf spraying, respectively. A superior effect was seen on echinocystic acid than on xanthohumol. Our study provides a statistical basis for breeding anti-viroid tomato genotypes and creating plant-originating chemical preparations to prevent viroid disease.
Collapse
Affiliation(s)
- Wenkun Tang
- Vegetable Industry Research InstituteGuizhou UniversityGuiyangChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Zhichao Tang
- Vegetable Industry Research InstituteGuizhou UniversityGuiyangChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Haiyi Liu
- Vegetable Industry Research InstituteGuizhou UniversityGuiyangChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Jinbiao Lu
- Vegetable Industry Research InstituteGuizhou UniversityGuiyangChina
- College of AgricultureGuizhou UniversityGuiyangChina
| | - Qianyun Du
- Guizhou Advanced Seed Industry GroupGuiyangChina
| | - Huan Tian
- Guizhou Advanced Seed Industry GroupGuiyangChina
| | - Jingwei Li
- Vegetable Industry Research InstituteGuizhou UniversityGuiyangChina
- College of AgricultureGuizhou UniversityGuiyangChina
| |
Collapse
|
4
|
Salih R, Brochu AS, Labbé C, Strelkov SE, Franke C, Bélanger R, Pérez-López E. A Hydroponic-Based Bioassay to Facilitate Plasmodiophora brassicae Phenotyping. PLANT DISEASE 2024; 108:131-138. [PMID: 37536345 DOI: 10.1094/pdis-05-23-0959-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
Clubroot, caused by the obligate parasite Plasmodiophora brassicae, is one of the most devastating diseases affecting the canola/oilseed rape (Brassica napus) industry worldwide. Currently, the planting of clubroot-resistant (CR) cultivars is the most effective strategy used to restrict the spread and the economic losses linked to the disease. However, virulent P. brassicae isolates have been able to infect many of the currently available CR cultivars, and the options to manage the disease are becoming limited. Another challenge has been achieving consistency in evaluating host reactions to P. brassicae infection, with most bioassays conducted in soil and/or potting medium, which requires significant space and can be labor intensive. Visual scoring of clubroot symptom development can also be influenced by user bias. Here, we have developed a hydroponic bioassay using well-characterized P. brassicae single-spore isolates representative of clubroot virulence in Canada, as well as field isolates from three Canadian provinces in combination with canola inbred homozygous lines carrying resistance genetics representative of CR cultivars available to growers in Canada. To improve the efficiency and consistency of disease assessment, symptom severity scores were compared with clubroot evaluations based on the scanned root area. According to the results, this bioassay offers a reliable, less expensive, and reproducible option to evaluate P. brassicae virulence, as well as to identify which canola resistance profile(s) may be effective against particular isolates. This bioassay will contribute to the breeding of new CR canola cultivars and the identification of virulence genes in P. brassicae that could trigger resistance and that have been very elusive to this day.[Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Rasha Salih
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Anne-Sophie Brochu
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Caroline Labbé
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
| | - Stephen E Strelkov
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Coreen Franke
- Nutrien Ag Solutions Canada, Saskatoon, SK S4N 4L8, Canada
| | - Richard Bélanger
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| | - Edel Pérez-López
- Départment de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université Laval, Quebec City, Quebec, Canada
- Centre de Recherche et d'Innovation sur les Végétaux (CRIV), Université Laval, Quebec City, Quebec, Canada
- Institute de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
5
|
Klueken AM, Mahfoud Y, Rößler S, Ludwig-Müller J. Testing Effects of Seed Treatments against Clubroot Disease in Various Oilseed Rape Hybrids. Pathogens 2023; 12:1339. [PMID: 38003803 PMCID: PMC10675021 DOI: 10.3390/pathogens12111339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Clubroot disease, caused by the protist pathogen Plasmodiophora brassicae, is an emerging threat to cruciferous crops, including oilseed rape (Brassica napus L.). Most of the current commercial cultivars are highly susceptible, and efficient management tools are lacking practical implementation. Over three years and three experimental periods, we studied the effects of isotianil in comparison with Bacillus amyloliquefaciens QST713-HiCFU against clubroot disease under greenhouse experiments. Our results show control effects, which were strongly dependent on seasons, host plant genotype, and clubroot isolates: isotianil and B. amyloliquefaciens QST713-HiCFU reduced disease severity consistently at variable, but field-relevant spore concentrations of clubroot isolates; with seed treatments showing superior effects compared to drench applications. The co-application of isotianil with B. amyloliquefaciens QST713-HiCFU could, in some cases, increase the efficacy. Interestingly, all studied hybrids reacted to treatments, albeit to a somewhat different extent. When tested against a field isolate, the results obtained with the single spore isolate were partially confirmed but with greater variability. Overall, the generally positive effects of isotianil and B. amyloliquefaciens QST713-HiCFU on the reduction of clubroot were repeatedly observed. The inoculation of clubroot disease with different spore counts indicates a dose-response effect for tested products. This study highlights the importance of performing experiments holistically over multiple, consecutive seasons, with various isolates, application types, and different genetic resources of host plants.
Collapse
Affiliation(s)
- A. Michael Klueken
- Bayer AG, Crop Science Division, Disease Control Biology, 40789 Monheim am Rhein, Germany;
| | - Yamen Mahfoud
- Faculty of Biology, Technische Universität Dresden, 01217 Dresden, Germany; (Y.M.); (S.R.)
| | - Sabine Rößler
- Faculty of Biology, Technische Universität Dresden, 01217 Dresden, Germany; (Y.M.); (S.R.)
| | - Jutta Ludwig-Müller
- Faculty of Biology, Technische Universität Dresden, 01217 Dresden, Germany; (Y.M.); (S.R.)
| |
Collapse
|