1
|
Yu C, Jiang Z, Xie Q, Wang Q, Wang L, Guan Y, Li Y, Yu W, Dai W, Zhang R, Wu J. Role of TgVIN1 and TgPEPCK in sugar/starch and lipid metabolism pathways in Torreya grandis seeds under foliar fertilizer treatments. Int J Biol Macromol 2024; 291:138944. [PMID: 39706403 DOI: 10.1016/j.ijbiomac.2024.138944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/29/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Foliar fertilizers quickly replenish nutrients for plant growth, boosting production and quality. However, how this affects metabolite accumulation in fruits is unclear. In this study, the metabolome and transcriptome of Torreya grandis seeds were investigated after five different foliar fertilizer treatments. Based on the results, foliar fertilizer treatments significantly altered the visual properties and nutritional quality of T. grandis seeds. According to the transcriptome and metabolome data, the differential metabolites and genes in T. grandis seeds were enriched in the sugar/starch and lipid metabolism-related pathways. Correlation analysis revealed that TgVIN1 and TgPEPCK play key roles in sugar/starch and lipid metabolism pathways, respectively. A dual-luciferase analysis and yeast one-hybrid assay were used to examine the regulation of candidate transcription factors on TgVIN1 and TgPEPCK expression. The results showed that TgHDZIP1 and TgMYB7 could directly bind to the TgVIN1 promoter and activate TgVIN1 expression. Similarly, TgIWS1 could directly bind to the TgPEPCK promoter. Transient overexpression of TgVIN1 increased the contents of fructose, soluble sugar and starch in and TgPEPCK significantly increased the C16:1 content in tobacco leaves, respectively. Our results contribute to the mechanisms underlying sucrose/starch and lipid metabolism as affected by foliar fertilizer treatments.
Collapse
Affiliation(s)
- Chenliang Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Zhengchu Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Qiandan Xie
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Qi Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Lei Wang
- Department of Landscape Architecture, Jiyang College, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Yuanyuan Guan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Yi Li
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Weiwu Yu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Wensheng Dai
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China
| | - Rui Zhang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China.
| | - Jiasheng Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, People's Republic of China; School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, People's Republic of China; NFGA Engineering Research Center for Torreya grandis 'Merrillii', Zhejiang A&F University, Hangzhou, People's Republic of China.
| |
Collapse
|
2
|
Zhan Z, Zhang Y, Geng K, Xue X, Deloire A, Li D, Wang Z. Effects of Vine Water Status on Malate Metabolism and γ-Aminobutyric Acid (GABA) Pathway-Related Amino Acids in Marselan ( Vitis vinifera L.) Grape Berries. Foods 2023; 12:4191. [PMID: 38231685 DOI: 10.3390/foods12234191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/10/2023] [Accepted: 11/12/2023] [Indexed: 01/19/2024] Open
Abstract
Malic acid is the predominant organic acid in grape berries, and its content is affected by abiotic factors such as temperature (fruit zone microclimate) and water (vine water status). The objectives of this study were to explore the potential mechanisms behind the effects of vine water status on the biosynthesis and degradation of berry malic acid and the potential downstream effects on berry metabolism. This study was conducted over two growing seasons in 2021 and 2022, comprising three watering regimes: no water stress (CK), light water stress (LWS), and moderate water stress (MWS). Compared to CK, a significantly higher level of malic acid was found in berries from the MWS treatment when the berry was still hard and green (E-L 33) in both years. However, water stress reduced the malic acid content at the ripe berry harvest (E-L 38) stage. The activities of NAD-malate dehydrogenase (NAD-MDH) and pyruvate kinase (PK) were enhanced by water stress. Except for the E-L 33 stage, the activity of phosphoenolpyruvate carboxylase (PEPC) was reduced by water stress. The highest phosphoenolpyruvate carboxykinase (PEPCK) activity was observed at the berry veraison (E-L 35) stage and coincided with the onset of a decrease in the malate content. Meanwhile, the expression of VvPEPCK was consistent with its enzyme activity. This study showed that water stress changed the content of some free amino acids (GABA, proline, leucine, aspartate, and glutamate), two of which (glutamate and GABA) are primary metabolites of the GABA pathway.
Collapse
Affiliation(s)
- Zhennan Zhan
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Ningxia Wine and Desertifcation Control Vocational and Technical College, Yinchuan 750199, China
| | - Yanxia Zhang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- Shanxi Academy Agricultural Sciences, Pomology Institute, Shanxi Agricultural University, Taiyuan 030006, China
| | - Kangqi Geng
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
| | - Xiaobin Xue
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Alain Deloire
- Department of Biology-Ecology, L'Institut Agro, University of Montpellier, 34060 Montpellier, France
| | - Dongmei Li
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| | - Zhenping Wang
- School of Life Sciences, Ningxia University, Yinchuan 750021, China
- School of Agriculture, Ningxia University, Yinchuan 750021, China
| |
Collapse
|
3
|
Ali MM, Gull S, Hu X, Hou Y, Chen F. Exogenously applied zinc improves sugar-acid profile of loquat (Eriobotrya japonica Lindl.) by regulating enzymatic activities and expression of their metabolism-related genes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107829. [PMID: 37329690 DOI: 10.1016/j.plaphy.2023.107829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/19/2023]
Abstract
Soluble sugars and organic acids are the most abundant components in ripe fruits, and they play critical roles in the development of fruit flavor and taste. In this study, loquat trees were sprayed with 0.1, 0.2 and 0.3% zinc sulphate. The contents of soluble sugars and organic acids were determined using HPLC-RID and UPLC-MS, respectively. The activities of key enzymes involved in sugar-acid metabolism were measured and expression profiling of related genes was done using RT-qPCR. The results revealed that 0.1% zinc sulphate was a promising treatment among other Zn applications with respect to the increased levels of soluble sugars and decreased acid contents in loquats. Correlation analysis showed that the enzymes i.e., SPS, SS, FK, and HK were may be involved in the regulation of fructose and glucose metabolism in the fruit pulp of loquat. While, the activity of NADP-ME showed negative and NAD-MDH showed a positive correlation with malic acid content. Meanwhile, EjSPS1-4, EjSS2-4, EjHK1-3, and EjFK1-6 may play an important role in soluble sugar metabolism in the pulp of loquat fruits. Similarly, EjPEPC2, EjPEPC3, EjNAD-MDH1, EjNAD-MDH3-5, EjNAD-MDH6 and EjNAD-MDH13 may have a vital contribution to malic acid biosynthesis in loquat fruits. This study provides new insights for future elucidation of key mechanisms regulating soluble sugars and malic acid biosynthesis in loquats.
Collapse
Affiliation(s)
- Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Institute of Subtropical Fruits, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shaista Gull
- Department of Horticulture, Bahauddin Zakariya University, Multan, 66000, Punjab, Pakistan
| | - Xiaobo Hu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Institute of Subtropical Fruits, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Youming Hou
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China; Institute of Subtropical Fruits, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
4
|
Deng H, Li X, Wang Y, Ma Q, Zeng Y, Xiang Y, Chen M, Zhang H, Xia H, Liang D, Lv X, Wang J, Deng Q. Organic Acid Accumulation and Associated Dynamic Changes in Enzyme Activity and Gene Expression during Fruit Development and Ripening of Common Loquat and Its Interspecific Hybrid. Foods 2023; 12:foods12050911. [PMID: 36900427 PMCID: PMC10000456 DOI: 10.3390/foods12050911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 02/25/2023] Open
Abstract
Loquats have gained increasing attention from consumers and growers for their essential nutrients and unusual phenology, which could help plug a gap period at market in early spring. Fruit acid is a critical contributor to fruit quality. The dynamic changes in organic acid (OA) during fruit development and ripening of common loquat (Dawuxing, DWX) and its interspecific hybrid (Chunhua, CH) were compared, as well as the corresponding enzyme activity and gene expression. At harvest, titratable acid was significantly lower (p ≤ 0.01) in CH (0.11%) than in DWX loquats (0.35%). As the predominant OA compound, malic acid accounted for 77.55% and 48.59% of the total acid of DWX and CH loquats at harvest, followed by succinic acid and tartaric acid, respectively. PEPC and NAD-MDH are key enzymes that participate in malic acid metabolism in loquat. The OA differences in DWX loquat and its interspecific hybrid could be attributed to the coordinated regulation of multiple genes and enzymes associated with OA biosynthesis, degradation, and transport. The data obtained in this work will serve as a fundamental and important basis for future loquat breeding programs and even for improvements in loquat cultural practices.
Collapse
|