1
|
Liu W, Liu J, Zhang M, Zhang J, Sun B, He C, He P, Zhang W. 1+1<2: Combined effect of low temperature stress and salt stress on Sesuvium portulacastrum L. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 219:109404. [PMID: 39675257 DOI: 10.1016/j.plaphy.2024.109404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/27/2024] [Accepted: 12/11/2024] [Indexed: 12/17/2024]
Abstract
To expedite the deployment of Sesuvium portulacastrum floating bed technology in Hangzhou Bay and the Yangtze River Estuary, and to overcome the cryogenic constraint, our study concentrated on investigating the impacts of both individual and combined stress factors, particularly low temperature and salinity, on its application. We detected the S. portulacastrum related enzyme activity and other biological macromolecules under low temperature stress, salt stress and combined stress. And we also analyzed the stress resistance mechanism under different stress conditions by transcriptomic technology. It was discovered that moderate salt stress could enhance plant tolerance to low temperature, indicating the presence of an antagonistic relationship between salinity and low temperature. The biological mechanism underlying this phenomenon lies in the fact that combined stresses induce the up-regulation of various genes and activate more pathways compared to single stress. Among these pathways, the linoleic acid metabolic pathway stands out as unique to combined stress conditions. This research represents the inaugural endeavor to investigate the impact of low temperature stress and combined stress on S.portulacastrum, offering a pivotal reference for the utilization of this plant in ecological restoration and management within the East China Sea. More valuable is that such conclusions may be extended to the coastal ecological governance of many high latitude countries, which is of great significance for global ecological environment improvement.
Collapse
Affiliation(s)
- Wei Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China; College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jinlin Liu
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Meijing Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Jianlin Zhang
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Bin Sun
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China
| | - Chiquan He
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Peimin He
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai, 201306, China.
| | - Wentao Zhang
- School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China; Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China.
| |
Collapse
|
2
|
Jing Z, Liu N, Zhang Z, Hou X. Research Progress on Plant Responses to Stress Combinations in the Context of Climate Change. PLANTS (BASEL, SWITZERLAND) 2024; 13:469. [PMID: 38498439 PMCID: PMC10893109 DOI: 10.3390/plants13040469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 01/24/2024] [Accepted: 02/05/2024] [Indexed: 03/20/2024]
Abstract
In the context of climate change, the frequency and intensity of extreme weather events are increasing, environmental pollution and global warming are exacerbated by anthropogenic activities, and plants will experience a more complex and variable environment of stress combinations. Research on plant responses to stress combinations is crucial for the development and utilization of climate-adaptive plants. Recently, the concept of stress combinations has been expanded from simple to multifactorial stress combinations (MFSCs). Researchers have realized the complexity and necessity of stress combination research and have extensively employed composite gradient methods, multi-omics techniques, and interdisciplinary approaches to integrate laboratory and field experiments. Researchers have studied the response mechanisms of plant reactive oxygen species (ROS), phytohormones, transcription factors (TFs), and other response mechanisms under stress combinations and reached some generalized conclusions. In this article, we focus on the research progress and methodological dynamics of plant responses to stress combinations and propose key scientific questions that are crucial to address, in the context of plant responses to stress assemblages, conserving biodiversity, and ensuring food security. We can enhance the search for universal pathways, identify targets for stress combinations, explore adaptive genetic responses, and leverage high-technology research. This is in pursuit of cultivating plants with greater tolerance to stress combinations and enabling their adaptation to and mitigation of the impacts of climate change.
Collapse
Affiliation(s)
- Zeyao Jing
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Na Liu
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Zongxian Zhang
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| | - Xiangyang Hou
- College of Grassland Science, Shanxi Agricultural University, Jinzhong 030801, China; (Z.J.); (N.L.); (Z.Z.)
- Key Laboratory of Model Innovation in Forage Production Efficiency, Ministry of Agriculture and Rural Affairs, Jinzhong 030801, China
| |
Collapse
|
3
|
Guo X, Peng W, Xu X, Xie K, Yang X. The Potential of Endophytes in Improving Salt-Alkali Tolerance and Salinity Resistance in Plants. Int J Mol Sci 2023; 24:16917. [PMID: 38069239 PMCID: PMC10706814 DOI: 10.3390/ijms242316917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/17/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Ensuring food security for the global population is a ceaseless and critical issue. However, high-salinity and high-alkalinity levels can harm agricultural yields throughout large areas, even in largely agricultural countries, such as China. Various physical and chemical treatments have been employed in different locations to mitigate high salinity and alkalinity but their effects have been minimal. Numerous researchers have recently focused on developing effective and environmentally friendly biological treatments. Endophytes, which are naturally occurring and abundant in plants, retain many of the same characteristics of plants owing to their simultaneous evolution. Therefore, extraction of endophytes from salt-tolerant plants for managing plant growth in saline-alkali soils has become an important research topic. This extraction indicates that the soil environment can be fundamentally improved, and the signaling pathways of plants can be altered to increase their defense capacity, and can even be inherited to ensure lasting efficacy. This study discusses the direct and indirect means by which plant endophytes mitigate the effects of plant salinity stress that have been observed in recent years.
Collapse
Affiliation(s)
- Xueying Guo
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (X.G.); (W.P.); (X.X.); (K.X.)
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Wanrong Peng
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (X.G.); (W.P.); (X.X.); (K.X.)
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China
| | - Xinyi Xu
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (X.G.); (W.P.); (X.X.); (K.X.)
| | - Kangwei Xie
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (X.G.); (W.P.); (X.X.); (K.X.)
| | - Xingyong Yang
- College of Pharmacy, Chengdu University, Chengdu 610106, China; (X.G.); (W.P.); (X.X.); (K.X.)
- Antibiotics Research and Re-Evaluation Key Laboratory of Sichuan Province, Chengdu University, Chengdu 610106, China
| |
Collapse
|