1
|
Chialva M, Stelluti S, Novero M, Masson S, Bonfante P, Lanfranco L. Genetic and functional traits limit the success of colonisation by arbuscular mycorrhizal fungi in a tomato wild relative. PLANT, CELL & ENVIRONMENT 2024; 47:4275-4292. [PMID: 38953693 DOI: 10.1111/pce.15007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/29/2024] [Accepted: 06/06/2024] [Indexed: 07/04/2024]
Abstract
To understand whether domestication had an impact on susceptibility and responsiveness to arbuscular mycorrhizal fungi (AMF) in tomato (Solanum lycopersicum), we investigated two tomato cultivars ("M82" and "Moneymaker") and a panel of wild relatives including S. neorickii, S. habrochaites and S. pennellii encompassing the whole Lycopersicon clade. Most genotypes revealed good AM colonisation levels when inoculated with the AMF Funneliformis mosseae. By contrast, both S. pennellii accessions analysed showed a very low colonisation, but with normal arbuscule morphology, and a negative response in terms of root and shoot biomass. This behaviour was independent of fungal identity and environmental conditions. Genomic and transcriptomic analyses revealed in S. pennellii the lack of genes identified within QTLs for AM colonisation, a limited transcriptional reprogramming upon mycorrhization and a differential regulation of strigolactones and AM-related genes compared to tomato. Donor plants experiments indicated that the AMF could represent a cost for S. pennellii: F. mosseae could extensively colonise the root only when it was part of a mycorrhizal network, but a higher mycorrhization led to a higher inhibition of plant growth. These results suggest that genetics and functional traits of S. pennellii are responsible for the limited extent of AMF colonisation.
Collapse
Affiliation(s)
- Matteo Chialva
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Stefania Stelluti
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Mara Novero
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Simon Masson
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| | - Luisa Lanfranco
- Department of Life Sciences and Systems Biology, University of Torino, Torino, Italy
| |
Collapse
|
2
|
Lin Z, Yi X, Ali MM, Zhang L, Wang S, Tian S, Chen F. RNAi-Mediated Suppression of OsBBTI5 Promotes Salt Stress Tolerance in Rice. Int J Mol Sci 2024; 25:1284. [PMID: 38279284 PMCID: PMC10816146 DOI: 10.3390/ijms25021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/28/2024] Open
Abstract
This study explores the impact of RNAi in terms of selectively inhibiting the expression of the OsBBTI5 gene, with the primary objective of uncovering its involvement in the molecular mechanisms associated with salt tolerance in rice. OsBBTI5, belonging to the Bowman-Birk inhibitor (BBI) family gene, is known for its involvement in plant stress responses. The gene was successfully cloned from rice, exhibiting transcriptional self-activation in yeast. A yeast two-hybrid assay confirmed its specific binding to OsAPX2 (an ascorbate peroxidase gene). Transgenic OsBBTI5-RNAi plants displayed insensitivity to varying concentrations of 24-epibrassinolide in the brassinosteroid sensitivity assay. However, they showed reduced root and plant height at high concentrations (10 and 100 µM) of GA3 immersion. Enzyme activity assays revealed increased peroxidase (POD) and superoxide dismutase (SOD) activities and decreased malondialdehyde (MDA) content under 40-60 mM NaCl. Transcriptomic analysis indicated a significant upregulation of photosynthesis-related genes in transgenic plants under salt stress compared to the wild type. Notably, this study provides novel insights, suggesting that the BBI gene is part of the BR signaling pathway, and that OsBBTI5 potentially enhances stress tolerance in transgenic plants through interaction with the salt stress-related gene OsAPX2.
Collapse
Affiliation(s)
- Zhimin Lin
- Fujian Academy of Agricultural Sciences Biotechnology Institute, Fuzhou 350003, China
| | - Xiaoyan Yi
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Muhammad Moaaz Ali
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Lijuan Zhang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Shaojuan Wang
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Shengnan Tian
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| | - Faxing Chen
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.Y.); (M.M.A.); (L.Z.); (S.W.); (S.T.)
| |
Collapse
|
3
|
Yurkov AP, Afonin AM, Kryukov AA, Gorbunova AO, Kudryashova TR, Kovalchuk AI, Gorenkova AI, Bogdanova EM, Kosulnikov YV, Laktionov YV, Kozhemyakov AP, Romanyuk DA, Zhukov VA, Puzanskiy RK, Mikhailova YV, Yemelyanov VV, Shishova MF. The Effects of Rhizophagus irregularis Inoculation on Transcriptome of Medicago lupulina Leaves at Early Vegetative and Flowering Stages of Plant Development. PLANTS (BASEL, SWITZERLAND) 2023; 12:3580. [PMID: 37896043 PMCID: PMC10610208 DOI: 10.3390/plants12203580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023]
Abstract
The study is aimed at revealing the effects of Rhizophagus irregularis inoculation on the transcriptome of Medicago lupulina leaves at the early (second leaf formation) and later (flowering) stages of plant development. A pot experiment was conducted under conditions of low phosphorus (P) level in the substrate. M. lupulina plants were characterized by high mycorrhizal growth response and mycorrhization parameters. Library sequencing was performed on the Illumina HiseqXTen platform. Significant changes in the expression of 4863 (padj < 0.01) genes from 34049 functionally annotated genes were shown by Massive Analysis of cDNA Ends (MACE-Seq). GO enrichment analysis using the Kolmogorov-Smirnov test was performed, and 244 functional GO groups were identified, including genes contributing to the development of effective AM symbiosis. The Mercator online tool was used to assign functional classes of differentially expressed genes (DEGs). The early stage was characterized by the presence of six functional classes that included only upregulated GO groups, such as genes of carbohydrate metabolism, cellular respiration, nutrient uptake, photosynthesis, protein biosynthesis, and solute transport. At the later stage (flowering), the number of stimulated GO groups was reduced to photosynthesis and protein biosynthesis. All DEGs of the GO:0016036 group were downregulated because AM plants had higher resistance to phosphate starvation. For the first time, the upregulation of genes encoding thioredoxin in AM plant leaves was shown. It was supposed to reduce ROS level and thus, consequently, enhance the mechanisms of antioxidant protection in M. lupulina plants under conditions of low phosphorus level. Taken together, the obtained results indicate genes that are the most important for the effective symbiosis with M. lupulina and might be engaged in other plant species.
Collapse
Affiliation(s)
- Andrey P. Yurkov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey M. Afonin
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Alexey A. Kryukov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Anastasia O. Gorbunova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Tatyana R. Kudryashova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Kovalchuk
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Graduate School of Biotechnology and Food Science, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 194064, Russia
| | - Anastasia I. Gorenkova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Ekaterina M. Bogdanova
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Yuri V. Kosulnikov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Yuri V. Laktionov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Andrey P. Kozhemyakov
- Laboratory of Ecology of Symbiotic and Associative Rhizobacteria, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (A.M.A.); (A.A.K.); (A.O.G.); (T.R.K.); (A.I.K.); (A.I.G.); (E.M.B.); (Y.V.K.); (Y.V.L.); (A.P.K.)
| | - Daria A. Romanyuk
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Vladimir A. Zhukov
- Laboratory of Genetics of Plant-Microbe Interactions, All-Russia Research Institute for Agricultural Microbiology, Pushkin, St. Petersburg 196608, Russia; (D.A.R.); (V.A.Z.)
| | - Roman K. Puzanskiy
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
- Laboratory of Analytical Phytochemistry, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia
| | - Yulia V. Mikhailova
- Laboratory of Biosystematics and Cytology, Komarov Botanical Institute of the Russian Academy of Sciences, St. Petersburg 197022, Russia;
| | - Vladislav V. Yemelyanov
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| | - Maria F. Shishova
- Faculty of Biology, St. Petersburg State University, St. Petersburg 199034, Russia; (R.K.P.); (V.V.Y.); (M.F.S.)
| |
Collapse
|