1
|
Chen Y, Yue XL, Feng JY, Gong X, Zhang WJ, Zuo JF, Zhang YM. Identification of QTNs, QTN-by-environment interactions, and their candidate genes for salt tolerance related traits in soybean. BMC PLANT BIOLOGY 2024; 24:316. [PMID: 38654195 PMCID: PMC11036579 DOI: 10.1186/s12870-024-05021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 04/15/2024] [Indexed: 04/25/2024]
Abstract
BACKGROUND Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.
Collapse
Affiliation(s)
- Ying Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiu-Li Yue
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Jian-Ying Feng
- College of Agriculture, Nanjing Agricultural University, Nanjing, China
| | - Xin Gong
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Jie Zhang
- Ningxia Academy of Agriculture and Forestry Sciences, Crop Research Institute, Yinchuan, Ningxia, China
| | - Jian-Fang Zuo
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, China.
| | - Yuan-Ming Zhang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
2
|
Zhang Z, Peng C, Xu W, Li Y, Qi X, Zhao M. Genome-wide association study of agronomic traits related to nitrogen use efficiency in Henan wheat. BMC Genomics 2024; 25:7. [PMID: 38166525 PMCID: PMC10759698 DOI: 10.1186/s12864-023-09922-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/18/2023] [Indexed: 01/04/2024] Open
Abstract
BACKGROUND Nitrogen use efficiency (NUE) is closely related to crop yield and nitrogen fertilizer application rate. Although NUE is susceptible to environments, quantitative trait nucleotides (QTNs) for NUE in wheat germplasm populations have been rarely reported in genome-wide associated study. RESULTS In this study, 244 wheat accessions were phenotyped by three NUE-related traits in three environments and genotyped by 203,224 SNPs. All the phenotypes for each trait were used to associate with all the genotypes of these SNP markers for identifying QTNs and QTN-by-environment interactions via 3VmrMLM. Among 279 QTNs and one QTN-by-environment interaction for low nitrogen tolerance, 33 were stably identified, especially, one large QTN (r2 > 10%), qPHR3A.2, was newly identified for plant height ratio in one environment and multi-environment joint analysis. Among 52 genes around qPHR3A.2, four genes (TraesCS3A01G101900, TraesCS3A01G102200, TraesCS3A01G104100, and TraesCS3A01G105400) were found to be differentially expressed in low-nitrogen-tolerant wheat genotypes, while TaCLH2 (TraesCS3A01G101900) was putatively involved in porphyrin metabolism in KEGG enrichment analyses. CONCLUSIONS This study identified valuable candidate gene for low-N-tolerant wheat breeding and provides new insights into the genetic basis of low N tolerance in wheat.
Collapse
Affiliation(s)
- Zaicheng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
| | - Chaojun Peng
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Weigang Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China.
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China.
| | - Yan Li
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Xueli Qi
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| | - Mingzhong Zhao
- Institute of Crops Molecular Breeding, National Engineering Laboratory of Wheat, Key Laboratory of Wheat Biology and Genetic Breeding in Central Huanghuai Area, Ministry of Agriculture, Henan Key Laboratory of Wheat Germplasm Resources Innovation and Improvement, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, People's Republic of China
- The Shennong Laboratory, Zhengzhou, 450002, People's Republic of China
| |
Collapse
|
3
|
Zheng Y, Thi KM, Lin L, Xie X, Khine EE, Nyein EE, Lin MHW, New WW, Aye SS, Wu W. Genome-wide association study of cooking-caused grain expansion in rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1250854. [PMID: 37711286 PMCID: PMC10498926 DOI: 10.3389/fpls.2023.1250854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023]
Abstract
Cooking-caused rice grain expansion (CCRGE) is a critical trait for evaluating the cooking quality of rice. Previous quantitative trait locus (QTL) mapping studies on CCRGE have been limited to bi-parental populations, which restrict the exploration of natural variation and mapping resolution. To comprehensively and precisely dissect the genetic basis of CCRGE, we performed a genome-wide association study (GWAS) on three related indices: grain breadth expansion index (GBEI), grain length expansion index (GLEI), and grain length-breadth ratio expansion index (GREI), using 345 rice accessions grown in two years (environments) and 193,582 SNP markers. By analyzing each environment separately using seven different methods (3VmrMLM, mrMLM, FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, ISIS EM-BLASSO), we identified a total of 32, 19 and 27 reliable quantitative trait nucleotides (QTNs) associated with GBEI, GLEI and GREI, respectively. Furthermore, by jointly analyzing the two environments using 3VmrMLM, we discovered 19, 22 and 25 QTNs, as well as 9, 5 and 7 QTN-by-environment interaction (QEIs) associated with GBEI, GLEI and GREI, respectively. Notably, 12, 9 and 15 QTNs for GBEI, GLEI and GREI were found within the intervals of previously reported QTLs. In the vicinity of these QTNs or QEIs, based on analyses of mutation type, gene ontology classification, haplotype, and expression pattern, we identified five candidate genes that are related to starch synthesis and endosperm development. The five candidate genes, namely, LOC_Os04g53310 (OsSSIIIb, near QTN qGREI-4.5s), LOC_Os05g02070 (OsMT2b, near QTN qGLEI-5.1s), LOC_Os06g04200 (wx, near QEI qGBEI-6.1i and QTNs qGREI-6.1s and qGLEI-6.1t), LOC_Os06g12450 (OsSSIIa, near QTN qGLEI-6.2t), and LOC_Os08g09230 (OsSSIIIa, near QTN qGBEI-8.1t), are predicted to be involved in the process of rice grain starch synthesis and to influence grain expansion after cooking. Our findings provide valuable insights and will facilitate genetic research and improvement of CCRGE.
Collapse
Affiliation(s)
- Yan Zheng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Khin Mar Thi
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Lihui Lin
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Xiaofang Xie
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ei Ei Khine
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Ei Ei Nyein
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Min Htay Wai Lin
- Department of Botany, Mawlamyine University, Mawlamyine, Myanmar
| | - Win Win New
- Department of Botany, Mawlamyine University, Mawlamyine, Myanmar
| | - San San Aye
- Department of Botany, Mawlamyine University, Mawlamyine, Myanmar
| | - Weiren Wu
- Fujian Provincial Key Laboratory of Crop Breeding by Design, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| |
Collapse
|