1
|
Wilson S, Zheng C, Maliepaard C, Mulder HA, Visser RGF, van Eeuwijk F. Multienvironment genomic prediction in tetraploid potato. G3 (BETHESDA, MD.) 2024; 14:jkae011. [PMID: 38243613 PMCID: PMC10989893 DOI: 10.1093/g3journal/jkae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/06/2023] [Accepted: 10/20/2023] [Indexed: 01/21/2024]
Abstract
Multienvironment genomic prediction was applied to tetraploid potato using 147 potato varieties, tested for 2 years, in 3 locations representative of 3 distinct regions in Europe. Different prediction scenarios were investigated to help breeders predict genotypic performance in the regions from one year to the next, for genotypes that were tested this year (scenario 1), as well as new genotypes (scenario 3). In scenario 2, we predicted new genotypes for any one of the 6 trials, using all the information that is available. The choice of prediction model required assessment of the variance-covariance matrix in a mixed model that takes into account heterogeneity of genetic variances and correlations. This was done for each analyzed trait (tuber weight, tuber length, and dry matter) where examples of both limited and higher degrees of heterogeneity was observed. This explains why dry matter did not need complex multienvironment modeling to combine environments and increase prediction ability, while prediction in tuber weight, improved only when models were flexible enough to capture the heterogeneous variances and covariances between environments. We also found that the prediction abilities in a target trial condition decreased, if trials with a low genetic correlation to the target were included when training the model. Genomic prediction in tetraploid potato can work once there is clarity about the prediction scenario, a suitable training set is created, and a multienvironment prediction model is chosen based on the patterns of G×E indicated by the genetic variances and covariances.
Collapse
Affiliation(s)
- Stefan Wilson
- Biometris, Wageningen University & Research Centre, Wageningen, PB 6708, The Netherlands
| | - Chaozhi Zheng
- Biometris, Wageningen University & Research Centre, Wageningen, PB 6708, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, Wageningen, PB 6708, The Netherlands
| | - Han A Mulder
- Wageningen University and Research Animal Breeding and Genomics, Wageningen, AH 6700, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Wageningen, PB 6708, The Netherlands
| | - Fred van Eeuwijk
- Biometris, Wageningen University & Research Centre, Wageningen, PB 6708, The Netherlands
| |
Collapse
|
2
|
Alemu A, Åstrand J, Montesinos-López OA, Isidro Y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A. Genomic selection in plant breeding: Key factors shaping two decades of progress. MOLECULAR PLANT 2024; 17:552-578. [PMID: 38475993 DOI: 10.1016/j.molp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden
| | | | - Julio Isidro Y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Javier Fernández-Gónzalez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, Texcoco, México 52640, Mexico
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
3
|
Aalborg T, Sverrisdóttir E, Kristensen HT, Nielsen KL. The effect of marker types and density on genomic prediction and GWAS of key performance traits in tetraploid potato. FRONTIERS IN PLANT SCIENCE 2024; 15:1340189. [PMID: 38525152 PMCID: PMC10957621 DOI: 10.3389/fpls.2024.1340189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 02/14/2024] [Indexed: 03/26/2024]
Abstract
Genomic prediction and genome-wide association studies are becoming widely employed in potato key performance trait QTL identifications and to support potato breeding using genomic selection. Elite cultivars are tetraploid and highly heterozygous but also share many common ancestors and generation-spanning inbreeding events, resulting from the clonal propagation of potatoes through seed potatoes. Consequentially, many SNP markers are not in a 1:1 relationship with a single allele variant but shared over several alleles that might exert varying effects on a given trait. The impact of such redundant "diluted" predictors on the statistical models underpinning genome-wide association studies (GWAS) and genomic prediction has scarcely been evaluated despite the potential impact on model accuracy and performance. We evaluated the impact of marker location, marker type, and marker density on the genomic prediction and GWAS of five key performance traits in tetraploid potato (chipping quality, dry matter content, length/width ratio, senescence, and yield). A 762-offspring panel of a diallel cross of 18 elite cultivars was genotyped by sequencing, and markers were annotated according to a reference genome. Genomic prediction models (GBLUP) were trained on four marker subsets [non-synonymous (29,553 SNPs), synonymous (31,229), non-coding (32,388), and a combination], and robustness to marker reduction was investigated. Single-marker regression GWAS was performed for each trait and marker subset. The best cross-validated prediction correlation coefficients of 0.54, 0.75, 0.49, 0.35, and 0.28 were obtained for chipping quality, dry matter content, length/width ratio, senescence, and yield, respectively. The trait prediction abilities were similar across all marker types, with only non-synonymous variants improving yield predictive ability by 16%. Marker reduction response did not depend on marker type but rather on trait. Traits with high predictive abilities, e.g., dry matter content, reached a plateau using fewer markers than traits with intermediate-low correlations, such as yield. The predictions were unbiased across all traits, marker types, and all marker densities >100 SNPs. Our results suggest that using non-synonymous variants does not enhance the performance of genomic prediction of most traits. The major known QTLs were identified by GWAS and were reproducible across exonic and whole-genome variant sets for dry matter content, length/width ratio, and senescence. In contrast, minor QTL detection was marker type dependent.
Collapse
Affiliation(s)
- Trine Aalborg
- Department of Chemistry and Bioscience, Aalborg University, Aalborg, Denmark
| | | | | | | |
Collapse
|
4
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
5
|
Ortiz R. Challenges for crop improvement. Emerg Top Life Sci 2023; 7:197-205. [PMID: 37905719 DOI: 10.1042/etls20230106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/02/2023]
Abstract
The genetic improvement of crops faces the significant challenge of feeding an ever-increasing population amidst a changing climate, and when governments are adopting a 'more with less' approach to reduce input use. Plant breeding has the potential to contribute to the United Nations Agenda 2030 by addressing various sustainable development goals (SDGs), with its most profound impact expected on SDG2 Zero Hunger. To expedite the time-consuming crossbreeding process, a genomic-led approach for predicting breeding values, targeted mutagenesis through gene editing, high-throughput phenomics for trait evaluation, enviromics for including characterization of the testing environments, machine learning for effective management of large datasets, and speed breeding techniques promoting early flowering and seed production are being incorporated into the plant breeding toolbox. These advancements are poised to enhance genetic gains through selection in the cultigen pools of various crops. Consequently, these knowledge-based breeding methods are pursued for trait introgression, population improvement, and cultivar development. This article uses the potato crop as an example to showcase the progress being made in both genomic-led approaches and gene editing for accelerating the delivery of genetic gains through the utilization of genetically enhanced elite germplasm. It also further underscores that access to technological advances in plant breeding may be influenced by regulations and intellectual property rights.
Collapse
Affiliation(s)
- Rodomiro Ortiz
- Department of Plant Breeding (VF), Swedish University of Agricultural Sciences (SLU), Box 190 Sundsvagen 10, SE 23422 Lomma, Sweden
| |
Collapse
|
6
|
Zhou G, Gao J, Zuo D, Li J, Li R. MSXFGP: combining improved sparrow search algorithm with XGBoost for enhanced genomic prediction. BMC Bioinformatics 2023; 24:384. [PMID: 37817077 PMCID: PMC10566073 DOI: 10.1186/s12859-023-05514-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 10/02/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND With the significant reduction in the cost of high-throughput sequencing technology, genomic selection technology has been rapidly developed in the field of plant breeding. Although numerous genomic selection methods have been proposed by researchers, the existing genomic selection methods still face the problem of poor prediction accuracy in practical applications. RESULTS This paper proposes a genome prediction method MSXFGP based on a multi-strategy improved sparrow search algorithm (SSA) to optimize XGBoost parameters and feature selection. Firstly, logistic chaos mapping, elite learning, adaptive parameter adjustment, Levy flight, and an early stop strategy are incorporated into the SSA. This integration serves to enhance the global and local search capabilities of the algorithm, thereby improving its convergence accuracy and stability. Subsequently, the improved SSA is utilized to concurrently optimize XGBoost parameters and feature selection, leading to the establishment of a new genomic selection method, MSXFGP. Utilizing both the coefficient of determination R2 and the Pearson correlation coefficient as evaluation metrics, MSXFGP was evaluated against six existing genomic selection models across six datasets. The findings reveal that MSXFGP prediction accuracy is comparable or better than existing widely used genomic selection methods, and it exhibits better accuracy when R2 is utilized as an assessment metric. Additionally, this research provides a user-friendly Python utility designed to aid breeders in the effective application of this innovative method. MSXFGP is accessible at https://github.com/DIBreeding/MSXFGP . CONCLUSIONS The experimental results show that the prediction accuracy of MSXFGP is comparable or better than existing genome selection methods, providing a new approach for plant genome selection.
Collapse
Affiliation(s)
- Ganghui Zhou
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot, 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot, 010018, China
| | - Jing Gao
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot, 010011, China.
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot, 010018, China.
- Inner Mongolia Autonomous Region Big Data Center, Chilechuan Street No. 1, Hohhot, 010091, China.
| | - Dongshi Zuo
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot, 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot, 010018, China
| | - Jin Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot, 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot, 010018, China
| | - Rui Li
- College of Computer and Information Engineering, Inner Mongolia Agricultural University, Erdos East Street No. 29, Hohhot, 010011, China
- Inner Mongolia Autonomous Region Key Laboratory of Big Data Research and Application for Agriculture and Animal Husbandry, Zhaowuda Road No. 306, Hohhot, 010018, China
| |
Collapse
|
7
|
Adams J, de Vries M, van Eeuwijk F. Efficient Genomic Prediction of Yield and Dry Matter in Hybrid Potato. PLANTS (BASEL, SWITZERLAND) 2023; 12:2617. [PMID: 37514232 PMCID: PMC10385487 DOI: 10.3390/plants12142617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 06/27/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
There is an ongoing endeavor within the potato breeding sector to rapidly adapt potato from a clonal polyploid crop to a diploid hybrid potato crop. While hybrid breeding allows for the efficient generation and selection of parental lines, it also increases breeding program complexity and results in longer breeding cycles. Over the past two decades, genomic prediction has revolutionized hybrid crop breeding through shorter breeding cycles, lower phenotyping costs, and better population improvement, resulting in increased genetic gains for genetically complex traits. In order to accelerate the genetic gains in hybrid potato, the proper implementation of genomic prediction is a crucial milestone in the rapid improvement of this crop. The authors of this paper set out to test genomic prediction in hybrid potato using current genotyped material with two alternative models: one model that predicts the general combining ability effects (GCA) and another which predicts both the general and specific combining ability effects (GCA+SCA). Using a training set comprising 769 hybrids and 456 genotyped parental lines, we found that reasonable a prediction accuracy could be achieved for most phenotypes with both zero common parents (ρ=0.36-0.61) and one (ρ=0.50-0.68) common parent between the training and test sets. There was no benefit with the inclusion of non-additive genetic effects in the GCA+SCA model despite SCA variance contributing between 9% and 19% of the total genetic variance. Genotype-by-environment interactions, while present, did not appear to affect the prediction accuracy, though prediction errors did vary across the trial's targets. These results suggest that genomically estimated breeding values on parental lines are sufficient for hybrid yield prediction.
Collapse
Affiliation(s)
- James Adams
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
- Solynta, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands
| | | | - Fred van Eeuwijk
- Biometris, Mathematical and Statistical Methods, Wageningen University and Research, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
8
|
Ortiz R, Reslow F, Vetukuri R, García-Gil MR, Pérez-Rodríguez P, Crossa J. Inbreeding Effects on the Performance and Genomic Prediction for Polysomic Tetraploid Potato Offspring Grown at High Nordic Latitudes. Genes (Basel) 2023; 14:1302. [PMID: 37372482 DOI: 10.3390/genes14061302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Inbreeding depression (ID) is caused by increased homozygosity in the offspring after selfing. Although the self-compatible, highly heterozygous, tetrasomic polyploid potato (Solanum tuberosum L.) suffers from ID, some argue that the potential genetic gains from using inbred lines in a sexual propagation system of potato are too large to be ignored. The aim of this research was to assess the effects of inbreeding on potato offspring performance under a high latitude and the accuracy of the genomic prediction of breeding values (GEBVs) for further use in selection. Four inbred (S1) and two hybrid (F1) offspring and their parents (S0) were used in the experiment, with a field layout of an augmented design with the four S0 replicated in nine incomplete blocks comprising 100, four-plant plots at Umeå (63°49'30″ N 20°15'50″ E), Sweden. S0 was significantly (p < 0.01) better than both S1 and F1 offspring for tuber weight (total and according to five grading sizes), tuber shape and size uniformity, tuber eye depth and reducing sugars in the tuber flesh, while F1 was significantly (p < 0.01) better than S1 for all tuber weight and uniformity traits. Some F1 hybrid offspring (15-19%) had better total tuber yield than the best-performing parent. The GEBV accuracy ranged from -0.3928 to 0.4436. Overall, tuber shape uniformity had the highest GEBV accuracy, while tuber weight traits exhibited the lowest accuracy. The F1 full sib's GEBV accuracy was higher, on average, than that of S1. Genomic prediction may facilitate eliminating undesired inbred or hybrid offspring for further use in the genetic betterment of potato.
Collapse
Affiliation(s)
- Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE 23436 Lomma, Sweden
- Umeå Plant Science Center, SLU Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE 90183 Umeå, Sweden
| | - Fredrik Reslow
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE 23436 Lomma, Sweden
| | - Ramesh Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), SE 23436 Lomma, Sweden
| | - M Rosario García-Gil
- Umeå Plant Science Center, SLU Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences (SLU), SE 90183 Umeå, Sweden
| | | | - José Crossa
- Colegio de Postgraduados (COLPOS), Montecillos 56230, Edo. de México, Mexico
- International Maize and Wheat Improvement Center (CIMMYT), El Batán, Texcoco 56237, Edo. de México, Mexico
| |
Collapse
|
9
|
Ortiz R, Reslow F, Montesinos-López A, Huicho J, Pérez-Rodríguez P, Montesinos-López OA, Crossa J. Partial least squares enhance multi-trait genomic prediction of potato cultivars in new environments. Sci Rep 2023; 13:9947. [PMID: 37336933 DOI: 10.1038/s41598-023-37169-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 06/17/2023] [Indexed: 06/21/2023] Open
Abstract
It is of paramount importance in plant breeding to have methods dealing with large numbers of predictor variables and few sample observations, as well as efficient methods for dealing with high correlation in predictors and measured traits. This paper explores in terms of prediction performance the partial least squares (PLS) method under single-trait (ST) and multi-trait (MT) prediction of potato traits. The first prediction was for tested lines in tested environments under a five-fold cross-validation (5FCV) strategy and the second prediction was for tested lines in untested environments (herein denoted as leave one environment out cross validation, LOEO). There was a good performance in terms of predictions (with accuracy mostly > 0.5 for Pearson's correlation) the accuracy of 5FCV was better than LOEO. Hence, we have empirical evidence that the ST and MT PLS framework is a very valuable tool for prediction in the context of potato breeding data.
Collapse
Affiliation(s)
- Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 190, SE 23436, Lomma, Sweden.
| | - Fredrik Reslow
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 190, SE 23436, Lomma, Sweden
| | - Abelardo Montesinos-López
- Departamento de Matemáticas, Centro Universitario de Ciencias Exactas e Ingenierías (CUCEI), 44430, Guadalajara, México
| | - José Huicho
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, 56237, Texcoco, Edo. de México, México
| | | | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, 56237, Texcoco, Edo. de México, México.
- Colegio de Postgraduados (COLPOS), 56230, Montecillos, Edo. de México, México.
- Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Australia.
| |
Collapse
|
10
|
Cuevas J, Reslow F, Crossa J, Ortiz R. Modeling genotype × environment interaction for single and multitrait genomic prediction in potato (Solanum tuberosum L.). G3 (BETHESDA, MD.) 2022; 13:6883526. [PMID: 36477309 PMCID: PMC9911059 DOI: 10.1093/g3journal/jkac322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 11/01/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
In this study, we extend research on genomic prediction (GP) to polysomic polyploid plant species with the main objective to investigate single-trait (ST) and multitrait (MT) multienvironment (ME) models using field trial data from 3 locations in Sweden [Helgegården (HEL), Mosslunda (MOS), Umeå (UM)] over 2 years (2020, 2021) of 253 potato cultivars and breeding clones for 5 tuber weight traits and 2 tuber flesh quality characteristics. This research investigated the GP of 4 genome-based prediction models with genotype × environment interactions (GEs): (1) ST reaction norm model (M1), (2) ST model considering covariances between environments (M2), (3) ST M2 extended to include a random vector that utilizes the environmental covariances (M3), and (4) MT model with GE (M4). Several prediction problems were analyzed for each of the GP accuracy of the 4 models. Results of the prediction of traits in HEL, the high yield potential testing site in 2021, show that the best-predicted traits were tuber flesh starch (%), weight of tuber above 60 or below 40 mm in size, and the total tuber weight. In terms of GP, accuracy model M4 gave the best prediction accuracy in 3 traits, namely tuber weight of 40-50 or above 60 mm in size, and total tuber weight, and very similar in the starch trait. For MOS in 2021, the best predictive traits were starch, weight of tubers above 60, 50-60, or below 40 mm in size, and the total tuber weight. MT model M4 was the best GP model based on its accuracy when some cultivars are observed in some traits. For the GP accuracy of traits in UM in 2021, the best predictive traits were the weight of tubers above 60, 50-60, or below 40 mm in size, and the best model was MT M4, followed by models ST M3 and M2.
Collapse
Affiliation(s)
- Jaime Cuevas
- Departamento de Energía, Universidad Autónoma del Estado de Quintana Roo, Chetumal, Quintana Roo 77019, México
| | - Fredrik Reslow
- Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), P.O. Box 190, Lomma SE 23436, Sweden
| | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México-Veracruz Km. 45, El Batán, Texcoco 56237, Edo. de Mexico, Mexico,Colegio de Postgraduados, Montecillos, Edo. de México 56230, México
| | - Rodomiro Ortiz
- Corresponding author: Sveriges Lantbruksuniversitet, Inst. för Växtförädling, Box 190, SE 23 422 Lomma, Sweden.
| |
Collapse
|
11
|
Cortés AJ, López-Hernández F, Blair MW. Genome-Environment Associations, an Innovative Tool for Studying Heritable Evolutionary Adaptation in Orphan Crops and Wild Relatives. Front Genet 2022; 13:910386. [PMID: 35991553 PMCID: PMC9389289 DOI: 10.3389/fgene.2022.910386] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/30/2022] [Indexed: 11/23/2022] Open
Abstract
Leveraging innovative tools to speed up prebreeding and discovery of genotypic sources of adaptation from landraces, crop wild relatives, and orphan crops is a key prerequisite to accelerate genetic gain of abiotic stress tolerance in annual crops such as legumes and cereals, many of which are still orphan species despite advances in major row crops. Here, we review a novel, interdisciplinary approach to combine ecological climate data with evolutionary genomics under the paradigm of a new field of study: genome-environment associations (GEAs). We first exemplify how GEA utilizes in situ georeferencing from genotypically characterized, gene bank accessions to pinpoint genomic signatures of natural selection. We later discuss the necessity to update the current GEA models to predict both regional- and local- or micro-habitat-based adaptation with mechanistic ecophysiological climate indices and cutting-edge GWAS-type genetic association models. Furthermore, to account for polygenic evolutionary adaptation, we encourage the community to start gathering genomic estimated adaptive values (GEAVs) for genomic prediction (GP) and multi-dimensional machine learning (ML) models. The latter two should ideally be weighted by de novo GWAS-based GEA estimates and optimized for a scalable marker subset. We end the review by envisioning avenues to make adaptation inferences more robust through the merging of high-resolution data sources, such as environmental remote sensing and summary statistics of the genomic site frequency spectrum, with the epigenetic molecular functionality responsible for plastic inheritance in the wild. Ultimately, we believe that coupling evolutionary adaptive predictions with innovations in ecological genomics such as GEA will help capture hidden genetic adaptations to abiotic stresses based on crop germplasm resources to assist responses to climate change. "I shall endeavor to find out how nature's forces act upon one another, and in what manner the geographic environment exerts its influence on animals and plants. In short, I must find out about the harmony in nature" Alexander von Humboldt-Letter to Karl Freiesleben, June 1799.
Collapse
Affiliation(s)
- Andrés J. Cortés
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Felipe López-Hernández
- Corporacion Colombiana de Investigacion Agropecuaria AGROSAVIA, C.I. La Selva, Rionegro, Colombia
| | - Matthew W. Blair
- Department of Agricultural & Environmental Sciences, Tennessee State University, Nashville, TN, United States
| |
Collapse
|