1
|
Ram Soren K, Tripathi S, Hembram M, Kumar N, Konda K A, Gupta NC, Bharadwaj C, Prasad Dixit G. Network interactions with functional roles and evolutionary relationships for BURP domain-containing proteins in chickpea and model species. Bioinformation 2023; 19:1197-1211. [PMID: 38250539 PMCID: PMC10794749 DOI: 10.6026/973206300191197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/31/2023] [Accepted: 12/31/2023] [Indexed: 01/23/2024] Open
Abstract
The functional significance and evolutionary relationships of BURP domain-containing genes unique to plants is of interest. Network analysis reveals different associations of BURP proteins with other proteins and functional terms, throwing light on their involvement in various biological processes and pathways. The gene expression data reveals that BURP genes are affected by salinity stress, reflecting diverse expression patterns in roots and shoots.
Collapse
Affiliation(s)
| | | | | | - Neeraj Kumar
- ICAR-Division of genetics, IARI, New Delhi, India
| | | | - NC Gupta
- National Institute of Plant Biotechnology, New Delhi, India
| | | | | |
Collapse
|
2
|
Ren J, Feng L, Guo L, Gou H, Lu S, Mao J. Genome-wide identification and expression analysis of the BURP domain-containing genes in Malus domestica. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1717-1731. [PMID: 38162916 PMCID: PMC10754798 DOI: 10.1007/s12298-023-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 01/03/2024]
Abstract
The conserved BURP-containing proteins are specific to plants and play a crucial role in plant growth, development, and response to abiotic stresses. However, less is known about the systematic characterization of BURP-containing proteins in apple. This study aimed to identify and analyze all BURP-containing genes in the apple genome, as well as to examine their expression patterns through various bioinformatics methods. Eighteen members of BURP-containing genes were identified in apple, six members lacked signal peptides, and the secondary structure was mainly a Random coil of BURP-containing genes. Gene structure and Motif analysis showed that proteins have similar structures and are conserved at the C-terminal. Cis-acting element analysis revealed that the proteins contain phytohormone and stress response elements, and chromosomal localization revealed that the family is unevenly distributed across eight chromosomes, with duplication of fragments leading to the expansion of family proteins. Tissue expression showed that MdPG3 and MdPG4 were expressed in different tissues and different varieties, MdRD2 and MdRD7 were highly expressed in 'M74' fruits and MdRD7 in 'M49' leaves, while MdUSP1 was highly expressed in 'GD' roots. The quantitative real-time PCR analysis showed that the expressions of six and seven genes were significantly up-regulated under NaCl and PEG treatments, respectively, whereas MdRD7 was significantly up-regulated under NaCl and PEG treatment over time. This study offers a comprehensive identification and expression analysis of BURP-containing proteins in apple. The findings provide a theoretical foundation for further exploration of the functions of this protein family. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01393-7.
Collapse
Affiliation(s)
- Jiaxuan Ren
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Li Feng
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Lili Guo
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Huimin Gou
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Shixiong Lu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070 People’s Republic of China
| |
Collapse
|
3
|
Tian R, Jiang J, Bo S, Zhang H, Zhang X, Hearne SJ, Tang J, Ding D, Fu Z. Multi-omic characterization of the maize GPI synthesis mutant gwt1 with defects in kernel development. BMC PLANT BIOLOGY 2023; 23:191. [PMID: 37038106 PMCID: PMC10084604 DOI: 10.1186/s12870-023-04188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 03/23/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND Glycosylphosphatidylinositol (GPI) and GPI-anchored proteins (GAPs) are important for cell wall formation and reproductive development in Arabidopsis. However, monocot counterparts that function in kernel endosperm development have yet to be discovered. Here, we performed a multi-omic analysis to explore the function of GPI related genes on kernel development in maize. RESULTS In maize, 48 counterparts of human GPI synthesis and lipid remodeling genes were identified, in which null mutation of the glucosaminyl-phosphatidylinositol O-acyltransferase1 gene, ZmGWT1, caused a kernel mutant (named gwt1) with defects in the basal endosperm transport layer (BETL). We performed plasma membrane (PM) proteomics to characterize the potential GAPs involved in kernel development. In total, 4,981 proteins were successfully identified in 10-DAP gwt1 kernels of mutant and wild-type (WT), including 1,638 membrane-anchored proteins with different posttranslational modifications. Forty-seven of the 256 predicted GAPs were differentially accumulated between gwt1 and WT. Two predicted BETL-specific GAPs (Zm00001d018837 and Zm00001d049834), which kept similar abundance at general proteome but with significantly decreased abundance at membrane proteome in gwt1 were highlighted. CONCLUSIONS Our results show the importance of GPI and GAPs for endosperm development and provide candidate genes for further investigation of the regulatory network in which ZmGWT1 participates.
Collapse
Affiliation(s)
- Runmiao Tian
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Jianjun Jiang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shirong Bo
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Hui Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xuehai Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Sarah Jane Hearne
- CIMMYT, KM 45 Carretera Mexico-Veracruz, El Batan, Texcoco, Edo. De Mexico, 56237, Mexico
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Dong Ding
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|