1
|
Jiao W, Song B, Pan H, Liu X. Influences of Salt Stress on Cotton Metabolism and Its Consequential Effects on the Development and Fecundity of Aphis gossypii Glover. INSECTS 2024; 15:713. [PMID: 39336681 PMCID: PMC11432358 DOI: 10.3390/insects15090713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/15/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024]
Abstract
The degree of global soil salinization is gradually deepening, which will inevitably affect agricultural ecology. It has been found that salt stress induces the resistance of host plants to phytophagous pests. However, little is known about the effects of salt-stressed cotton plants on the fitness of cotton aphids (Aphis gossypii Glover). In this study, we investigated the differences between cotton metabolomes under mild (75 mM NaCl) and moderate (150 mM NaCl) salinity conditions and their effects on the fitness of cotton aphids. The results showed that 49 metabolites exhibited significant upregulation, while 86 metabolites were downregulated, with the increasing NaCl concentration. The duration of nymphal aphids under 150 mM NaCl significantly extended to 6.31 days when compared with the control (0 mM NaCl, 4.10 days). Meanwhile, the longevity of adult aphids decreased significantly under 75 and 150 mM NaCl, with an average of 10.38 days (0 mM NaCl) reduced to 8.55 and 4.89 days, respectively. Additionally, the total reproduction number of single females decreased from 31.31 (0 mM NaCl) to 21.13 (75 mM NaCl) and 10.75 (150 mM NaCl), whereas the survival rate of aphids decreased from 81.25% (0 mM NaCl) to 56.25% (75 mM NaCl) and 34.38% (150 mM NaCl) on the 12th day. These results support the hypothesis that plants growing under salt stress are better defended against herbivores. Furthermore, 49 differential metabolites were found to be negatively correlated with the longevity and fecundity of adult aphids, while 86 different metabolites showed the opposite trend. These results provide insights into the occurrence and control of cotton aphids amidst the escalating issue of secondary salinization.
Collapse
Affiliation(s)
- Wangquan Jiao
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- National Plant Protection Scientific Observation and Experiment Station of Korla, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Bingmei Song
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
- National Plant Protection Scientific Observation and Experiment Station of Korla, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hongsheng Pan
- National Plant Protection Scientific Observation and Experiment Station of Korla, Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiaoning Liu
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830046, China
| |
Collapse
|
2
|
Ragini R, Murukan N, Sekhon NK, Chugh C, Agarwal P, Yadav P, Mallick N, Jha SK, Iquebal MA, Tandon G, Verma A, Singh B, Jacob SR, Raghunandan K, Prabhu KV, Tomar SS, Vinod. Breaking the association between gametocidal gene(s) and leaf rust resistance gene ( LrS2427) in Triticum aestivum- Aegilops speltoides derivative by gamma irradiation. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:54. [PMID: 39148502 PMCID: PMC11322474 DOI: 10.1007/s11032-024-01491-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 08/02/2024] [Indexed: 08/17/2024]
Abstract
Utilization of crop wild relatives of wheat can be very effective in building the genetic diversity to cater to the evolving strains of disease pathogens. Aegilops speltoides is a rich source of rust resistance genes however transferring those to wheat genome can be tedious due to co-transfer and preferential transmission of undesirable genes causing gametocidal activity. Such an unholy association was observed in Triticum aestivum-Ae. speltoides derivative line Sel. 2427 which possess the broad-spectrum leaf rust seedling resistance gene (LrS2427). Molecular analysis based on 35 K wheat breeder's array revealed the maximum percentage of Ae. speltoides genome introgression on homoeologous group 2. In situ hybridization studies revealed the presence of S genome in Sel. 2427, showing six translocations on four chromosomes. Karyotyping using repetitive probe (AAG)6 revealed that the two chromosomes involved are 2D and 2B. Genic regions causing gametocidal activity were identified by dissecting it into component traits and QTLs on 2D and 2B chromosomes were revealed in case of the trait seed shrivelling index. To break the inadvertent association of LrS2427 with gametocidal genes, F1(Agra Local X Sel. 2427) seeds were irradiated with gamma rays and stable leaf rust resistant mutants lacking gametocidal activity were developed. These mutants showed resistance to different races of leaf rust pathogen and showed superior agronomic performance as well. These mutants could be a great resource in wheat improvement for utilization of the leaf rust resistance gene LrS2427 without any yield penalty. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01491-8.
Collapse
Affiliation(s)
- R. Ragini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niranjana Murukan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navpreet Kaur Sekhon
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chetna Chugh
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priyanka Agarwal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Prachi Yadav
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Niharika Mallick
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Shailendra Kumar Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Gitanjali Tandon
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Aakriti Verma
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Bhupinder Singh
- Division of Environment Science, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sherry Rachel Jacob
- Division of Germplasm Conservation, ICAR-National Bureau of Plant Genetic Resources, New Delhi, India
| | - K. Raghunandan
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Kumble Vinod Prabhu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
3
|
Lee KT, Liao HS, Hsieh MH. Glutamine Metabolism, Sensing and Signaling in Plants. PLANT & CELL PHYSIOLOGY 2023; 64:1466-1481. [PMID: 37243703 DOI: 10.1093/pcp/pcad054] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/23/2023] [Accepted: 05/24/2023] [Indexed: 05/29/2023]
Abstract
Glutamine (Gln) is the first amino acid synthesized in nitrogen (N) assimilation in plants. Gln synthetase (GS), converting glutamate (Glu) and NH4+ into Gln at the expense of ATP, is one of the oldest enzymes in all life domains. Plants have multiple GS isoenzymes that work individually or cooperatively to ensure that the Gln supply is sufficient for plant growth and development under various conditions. Gln is a building block for protein synthesis and an N-donor for the biosynthesis of amino acids, nucleic acids, amino sugars and vitamin B coenzymes. Most reactions using Gln as an N-donor are catalyzed by Gln amidotransferase (GAT) that hydrolyzes Gln to Glu and transfers the amido group of Gln to an acceptor substrate. Several GAT domain-containing proteins of unknown function in the reference plant Arabidopsis thaliana suggest that some metabolic fates of Gln have yet to be identified in plants. In addition to metabolism, Gln signaling has emerged in recent years. The N regulatory protein PII senses Gln to regulate arginine biosynthesis in plants. Gln promotes somatic embryogenesis and shoot organogenesis with unknown mechanisms. Exogenous Gln has been implicated in activating stress and defense responses in plants. Likely, Gln signaling is responsible for some of the new Gln functions in plants.
Collapse
Affiliation(s)
- Kim-Teng Lee
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| | - Hong-Sheng Liao
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Ming-Hsiun Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
- Molecular and Biological Agricultural Sciences, The Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
4
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
5
|
Li Y, Guo L, Cui Y, Yan X, Ouyang J, Li S. Lipid transfer protein, OsLTPL18, is essential for grain weight and seed germination in rice. Gene 2023; 883:147671. [PMID: 37506985 DOI: 10.1016/j.gene.2023.147671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/20/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Nonspecific lipid transfer proteins (nsLTPs) promote the intermembrane transportation of phospholipids, fatty acids, and steroids, and play diverse roles in various biological processes. However, the potential roles of the rice nsLTPs have not been well elucidated yet. Here, the functions of OsLTPL18 were analyzed using CRISPR/Cas9 strategy and cytological analysis. The osltpl18 (osltpl18-1, osltpl18-2, and osltpl18-3) seeds were thinner, and 1000-grain weight and grain thickness of osltpl18 plants were decreased obviously, compared to the ZH11. Meanwhile, the results of germination assay and 1 % TTC staining showed that vigor of osltpl18 seeds decreased significantly. Furthermore, the results of scanning electron microscopy (SEM) revealed that the cell width of spikelet hull in osltpl18 lines was significantly reduced than that in WT, as well as cell number in grain-width direction. Finally, we found that co-expressed genes were enriched in glucan biosynthesis, protein transporter activity, serine-type endopeptidase inhibitor activity, and nutrient reservoir activity. In this study, we discussed that OsLTPL18 might have coordinating functions in regulation of grain weight and germination in rice.
Collapse
Affiliation(s)
- Yangyang Li
- School of Basic Medical Science, Nanchang University, Nanchang 330031, China
| | - Lina Guo
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Ying Cui
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Xin Yan
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Jiexiu Ouyang
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China
| | - Shaobo Li
- Key Laboratory of Molecular Biology and Genetic Engineering of Jiangxi Province, School of Life Science, Nanchang University, Nanchang 330031, China.
| |
Collapse
|
6
|
Zayed O, Hewedy OA, Abdelmoteleb A, Ali M, Youssef MS, Roumia AF, Seymour D, Yuan ZC. Nitrogen Journey in Plants: From Uptake to Metabolism, Stress Response, and Microbe Interaction. Biomolecules 2023; 13:1443. [PMID: 37892125 PMCID: PMC10605003 DOI: 10.3390/biom13101443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 10/29/2023] Open
Abstract
Plants uptake and assimilate nitrogen from the soil in the form of nitrate, ammonium ions, and available amino acids from organic sources. Plant nitrate and ammonium transporters are responsible for nitrate and ammonium translocation from the soil into the roots. The unique structure of these transporters determines the specificity of each transporter, and structural analyses reveal the mechanisms by which these transporters function. Following absorption, the nitrogen metabolism pathway incorporates the nitrogen into organic compounds via glutamine synthetase and glutamate synthase that convert ammonium ions into glutamine and glutamate. Different isoforms of glutamine synthetase and glutamate synthase exist, enabling plants to fine-tune nitrogen metabolism based on environmental cues. Under stressful conditions, nitric oxide has been found to enhance plant survival under drought stress. Furthermore, the interaction between salinity stress and nitrogen availability in plants has been studied, with nitric oxide identified as a potential mediator of responses to salt stress. Conversely, excessive use of nitrate fertilizers can lead to health and environmental issues. Therefore, alternative strategies, such as establishing nitrogen fixation in plants through diazotrophic microbiota, have been explored to reduce reliance on synthetic fertilizers. Ultimately, genomics can identify new genes related to nitrogen fixation, which could be harnessed to improve plant productivity.
Collapse
Affiliation(s)
- Omar Zayed
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Omar A. Hewedy
- Genetics Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
- Department of Plant Agriculture, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Ali Abdelmoteleb
- Botany Department, Faculty of Agriculture, Menoufia University, Shebin El-Kom 32511, Egypt;
| | - Mohammed Ali
- Maryout Research Station, Genetic Resources Department, Desert Research Center, 1 Mathaf El-Matarya St., El-Matareya, Cairo 11753, Egypt;
| | - Mohamed S. Youssef
- Botany and Microbiology Department, Faculty of Science, Kafrelsheikh University, Kafrelsheikh 33516, Egypt;
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ahmed F. Roumia
- Department of Agricultural Biochemistry, Faculty of Agriculture, Menoufia University, Shibin El-Kom 32514, Egypt;
| | - Danelle Seymour
- Department of Botany and Plant Sciences, University of California Riverside, Riverside, CA 9250, USA;
| | - Ze-Chun Yuan
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Microbiology and Immunology, The University of Western Ontario, 1151 Richmond Street, London, ON N6A 5B7, Canada
| |
Collapse
|
7
|
Luo Q, Fu H, Hu F, Li S, Chen Q, Peng S, Yang C, Liu Y, Chen Y. Effects of Biological Nitrogen Metabolism on Glufosinate-Susceptible and -Resistant Goosegrass ( Eleusine indica L.). Int J Mol Sci 2023; 24:13791. [PMID: 37762094 PMCID: PMC10531271 DOI: 10.3390/ijms241813791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Glufosinate is a broad-spectrum herbicide used to control most weeds in agriculture worldwide. Goosegrass (Eleusine indica L.) is one of the top ten malignant weeds across the world, showing high tolerance to glufosinate via different mechanisms that are not yet fully understood. This study revealed that nitrogen metabolism could be a target-resistant site, providing clues to finally clarify the mechanism of glufosinate resistance in resistant goosegrass populations. Compared to susceptible goosegrass (NX), the resistant goosegrass (AUS and CS) regarding the stress of glufosinate showed stronger resistance with lower ammonia contents, higher target enzyme GS (glutamine synthetase) activity, and lower GOGAT (glutamine 2-oxoglutarate aminotransferase) activity. The GDH (glutamate dehydrogenase) activity of another pathway increased, but its gene expression was downregulated in resistant goosegrass (AUS). Analyzing the transcriptome and proteome data of goosegrass under glufosinate stress at 36 h showed that the KEGG pathway of the nitrogen metabolism was enriched in glufosinate-susceptible goosegrass (NX), but not in glufosinate-resistant goosegrass (CS and AUS). Several putative target genes involved in glufosinate stress countermeasures were identified. This study provides specific insights into the nitrogen metabolism of resistant goosegrass, and gives a basis for future functional verification of glufosinate-tolerance genes in plants.
Collapse
Affiliation(s)
- Qiyu Luo
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
- College of Life Science, South China Agricultural University, Guangzhou 510642, China; (Q.C.); (S.P.)
| | - Hao Fu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
| | - Fang Hu
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
| | - Shiguo Li
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
| | - Qiqi Chen
- College of Life Science, South China Agricultural University, Guangzhou 510642, China; (Q.C.); (S.P.)
| | - Shangming Peng
- College of Life Science, South China Agricultural University, Guangzhou 510642, China; (Q.C.); (S.P.)
| | - Cunyi Yang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
| | - Yaoguang Liu
- College of Life Science, South China Agricultural University, Guangzhou 510642, China; (Q.C.); (S.P.)
| | - Yong Chen
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (Q.L.); (H.F.); (F.H.); (S.L.); (C.Y.)
| |
Collapse
|
8
|
Valderrama-Martín JM, Ortigosa F, Aledo JC, Ávila C, Cánovas FM, Cañas RA. Pine has two glutamine synthetase paralogs, GS1b.1 and GS1b.2, exhibiting distinct biochemical properties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:1330-1347. [PMID: 36658761 DOI: 10.1111/tpj.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 01/13/2023] [Indexed: 06/17/2023]
Abstract
The enzyme glutamine synthetase (EC 6.3.1.2) is mainly responsible for the incorporation of inorganic nitrogen into organic molecules in plants. In the present work, a pine (Pinus pinaster) GS1 (PpGS1b.2) gene was identified, showing a high sequence identity with the GS1b.1 gene previously characterized in conifers. Phylogenetic analysis revealed that the presence of PpGS1b.2 is restricted to the genera Pinus and Picea and is not found in other conifers. Gene expression data suggest a putative role of PpGS1b.2 in plant development, similar to other GS1b genes from angiosperms, suggesting evolutionary convergence. The characterization of GS1b.1 and GS1b.2 at the structural, physicochemical, and kinetic levels has shown differences even though they have high sequence homology. GS1b.2 had a lower optimum pH (6 vs. 6.5) and was less thermally stable than GS1b.1. GS1b.2 exhibited positive cooperativity for glutamate and substrate inhibition for ammonium. However, GS1b.1 exhibited substrate inhibition behavior for glutamate and ATP. Alterations in the kinetic characteristics produced by site-directed mutagenesis carried out in this work strongly suggest an implication of amino acids at positions 264 and 267 in the active center of pine GS1b.1 and GS1b.2 being involved in affinity toward ammonium. Therefore, the amino acid differences between GS1b.1 and GS1b.2 would support the functioning of both enzymes to meet distinct plant needs.
Collapse
Affiliation(s)
- José Miguel Valderrama-Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Juan Carlos Aledo
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| | - Rafael A Cañas
- Integrative Molecular Biology Lab, Universidad de Málaga, Campus Universitario de Teatinos, 29071, Málaga, Spain
| |
Collapse
|