1
|
Talukder ZI, Underwood W, Misar CG, Li X, Seiler GJ, Cai X, Qi L. Genetic analysis of basal stalk rot resistance introgressed from wild Helianthus petiolaris into cultivated sunflower ( Helianthus annuus L.) using an advanced backcross population. FRONTIERS IN PLANT SCIENCE 2023; 14:1278048. [PMID: 37920712 PMCID: PMC10619160 DOI: 10.3389/fpls.2023.1278048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 11/04/2023]
Abstract
Introduction Sclerotinia sclerotiorum is a serious pathogen causing severe basal stalk rot (BSR) disease on cultivated sunflower (Helianthus annuus L.) that leads to significant yield losses due to insufficient resistance. The wild annual sunflower species H. petiolaris, commonly known as prairie sunflower is known for its resistance against this pathogen. Sunflower resistance to BSR is quantitative and determined by many genes with small effects on the resistance phenotype. The objective of this study was to identify loci governing BSR resistance derived from H. petiolaris using a quantitative trait loci (QTL) mapping approach. Methods BSR resistance among lines of an advanced backcross population (AB-QTL) with 174 lines developed from a cross of inbred line HA 89 with H. petiolaris PI 435843 was determined in the field during 2017-2019, and in the greenhouse in 2019. AB-QTL lines and the HA 89 parent were genotyped using genotyping-by-sequencing and a genetic linkage map was developed spanning 997.51 cM and using 1,150 SNP markers mapped on 17 sunflower chromosomes. Results and discussion Highly significant differences (p<0.001) for BSR response among AB-QTL lines were observed disease incidence (DI) in all field seasons, as well as disease rating (DR) and area under the disease progress curve (AUDPC) in the greenhouse with a moderately high broad-sense heritability (H 2) of 0.61 for the tested resistance parameters. A total of 14 QTL associated with BSR resistance were identified on nine chromosomes, each explaining a proportion of the phenotypic variation ranging from 3.5% to 28.1%. Of the 14 QTL, eight were detected for BSR resistance in the field and six were detected under greenhouse conditions. Alleles conferring increased BSR resistance were contributed by the H. petiolaris parent at 11 of the 14 QTL.
Collapse
Affiliation(s)
- Zahirul I. Talukder
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - William Underwood
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Christopher G. Misar
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Gerald J. Seiler
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Xiwen Cai
- Wheat, Sorghum and Forage Research Unit, United States Department of Agriculture (USDA)-Agricultural Research Service, Lincoln, NE, United States
| | - Lili Qi
- United States Department of Agriculture (USDA)-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| |
Collapse
|
2
|
Leprévost T, Boutet G, Lesné A, Rivière JP, Vetel P, Glory I, Miteul H, Le Rat A, Dufour P, Regnault-Kraut C, Sugio A, Lavaud C, Pilet-Nayel ML. Advanced backcross QTL analysis and comparative mapping with RIL QTL studies and GWAS provide an overview of QTL and marker haplotype diversity for resistance to Aphanomyces root rot in pea ( Pisum sativum). FRONTIERS IN PLANT SCIENCE 2023; 14:1189289. [PMID: 37841625 PMCID: PMC10569610 DOI: 10.3389/fpls.2023.1189289] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 07/25/2023] [Indexed: 10/17/2023]
Abstract
Aphanomyces euteiches is the most damaging soilborne pea pathogen in France. Breeding of pea resistant varieties combining a diversity of quantitative trait loci (QTL) is a promising strategy considering previous research achievements in dissecting polygenic resistance to A. euteiches. The objective of this study was to provide an overview of the diversity of QTL and marker haplotypes for resistance to A. euteiches, by integrating a novel QTL mapping study in advanced backcross (AB) populations with previous QTL analyses and genome-wide association study (GWAS) using common markers. QTL analysis was performed in two AB populations derived from the cross between the susceptible spring pea variety "Eden" and the two new sources of partial resistance "E11" and "LISA". The two AB populations were genotyped using 993 and 478 single nucleotide polymorphism (SNP) markers, respectively, and phenotyped for resistance to A. euteiches in controlled conditions and in infested fields at two locations. GWAS and QTL mapping previously reported in the pea-Aphanomyces collection and from four recombinant inbred line (RIL) populations, respectively, were updated using a total of 1,850 additional markers, including the markers used in the Eden x E11 and Eden x LISA populations analysis. A total of 29 resistance-associated SNPs and 171 resistance QTL were identified by GWAS and RIL or AB QTL analyses, respectively, which highlighted 10 consistent genetic regions confirming the previously reported QTL. No new consistent resistance QTL was detected from both Eden x E11 and Eden x LISA AB populations. However, a high diversity of resistance haplotypes was identified at 11 linkage disequilibrium (LD) blocks underlying consistent genetic regions, especially in 14 new sources of resistance from the pea-Aphanomyces collection. An accumulation of favorable haplotypes at these 11 blocks was confirmed in the most resistant pea lines of the collection. This study provides new SNP markers and rare haplotypes associated with the diversity of Aphanomyces root rot resistance QTL investigated, which will be useful for QTL pyramiding strategies to increase resistance levels in future pea varieties.
Collapse
Affiliation(s)
- Théo Leprévost
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Gilles Boutet
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Angélique Lesné
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | - Pierrick Vetel
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Isabelle Glory
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Henri Miteul
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Anaïs Le Rat
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | | | | | - Akiko Sugio
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
| | - Clément Lavaud
- IGEPP, INRAE, Institut Agro, University of Rennes, Le Rheu, France
- KWS MOMONT Recherche SARL, Allonnes, France
| | | |
Collapse
|
3
|
Poudel RS, Belay K, Nelson B, Brueggeman R, Underwood W. Population and genome-wide association studies of Sclerotinia sclerotiorum isolates collected from diverse host plants throughout the United States. Front Microbiol 2023; 14:1251003. [PMID: 37829452 PMCID: PMC10566370 DOI: 10.3389/fmicb.2023.1251003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/29/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction Sclerotinia sclerotiorum is a necrotrophic fungal pathogen causing disease and economic loss on numerous crop plants. This fungus has a broad host range and can infect over 400 plant species, including important oilseed crops such as soybean, canola, and sunflower. S. sclerotiorum isolates vary in aggressiveness of lesion formation on plant tissues. However, the genetic basis for this variation remains to be determined. The aims of this study were to evaluate a diverse collection of S. sclerotiorum isolates collected from numerous hosts and U.S. states for aggressiveness of stem lesion formation on sunflower, to evaluate the population characteristics, and to identify loci associated with isolate aggressiveness using genome-wide association mapping. Methods A total of 219 S. sclerotiorum isolates were evaluated for stem lesion formation on two sunflower inbred lines and genotyped using genotyping-by-sequencing. DNA markers were used to assess population differentiation across hosts, regions, and climatic conditions and to perform a genome-wide association study of isolate aggressiveness. Results and discussion We observed a broad range of aggressiveness for lesion formation on sunflower stems, and only a moderate correlation between aggressiveness on the two lines. Population genetic evaluations revealed differentiation between populations from warmer climate regions compared to cooler regions. Finally, a genome-wide association study of isolate aggressiveness identified three loci significantly associated with aggressiveness on sunflower. Functional characterization of candidate genes at these loci will likely improve our understanding of the virulence strategies used by this pathogen to cause disease on a wide array of agriculturally important host plants.
Collapse
Affiliation(s)
- Roshan Sharma Poudel
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Kassaye Belay
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Berlin Nelson
- Department of Plant Pathology, North Dakota State University, Fargo, ND, United States
| | - Robert Brueggeman
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - William Underwood
- Edward T. Schafer Agricultural Research Center, Sunflower and Plant Biology Research Unit, USDA Agricultural Research Service, Fargo, ND, United States
| |
Collapse
|
4
|
Ribone AI, Fass M, Gonzalez S, Lia V, Paniego N, Rivarola M. Co-Expression Networks in Sunflower: Harnessing the Power of Multi-Study Transcriptomic Public Data to Identify and Categorize Candidate Genes for Fungal Resistance. PLANTS (BASEL, SWITZERLAND) 2023; 12:2767. [PMID: 37570920 PMCID: PMC10421300 DOI: 10.3390/plants12152767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/19/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023]
Abstract
Fungal plant diseases are a major threat to food security worldwide. Current efforts to identify and list loci involved in different biological processes are more complicated than originally thought, even when complete genome assemblies are available. Despite numerous experimental and computational efforts to characterize gene functions in plants, about ~40% of protein-coding genes in the model plant Arabidopsis thaliana L. are still not categorized in the Gene Ontology (GO) Biological Process (BP) annotation. In non-model organisms, such as sunflower (Helianthus annuus L.), the number of BP term annotations is far fewer, ~22%. In the current study, we performed gene co-expression network analysis using eight terabytes of public transcriptome datasets and expression-based functional prediction to categorize and identify loci involved in the response to fungal pathogens. We were able to construct a reference gene network of healthy green tissue (GreenGCN) and a gene network of healthy and stressed root tissues (RootGCN). Both networks achieved robust, high-quality scores on the metrics of guilt-by-association and selective constraints versus gene connectivity. We were able to identify eight modules enriched in defense functions, of which two out of the three modules in the RootGCN were also conserved in the GreenGCN, suggesting similar defense-related expression patterns. We identified 16 WRKY genes involved in defense related functions and 65 previously uncharacterized loci now linked to defense response. In addition, we identified and classified 122 loci previously identified within QTLs or near candidate loci reported in GWAS studies of disease resistance in sunflower linked to defense response. All in all, we have implemented a valuable strategy to better describe genes within specific biological processes.
Collapse
Affiliation(s)
| | | | | | | | | | - Máximo Rivarola
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), CICVyA—Instituto Nacional de Tecnología Agropecuaria (INTA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Los Reseros y Nicolás Repetto, Hurlingham 1686, Argentina; (A.I.R.); (M.F.); (S.G.); (V.L.); (N.P.)
| |
Collapse
|
5
|
Talukder ZI, Underwood W, Misar CG, Seiler GJ, Cai X, Li X, Qi L. A Quantitative Genetic Study of Sclerotinia Head Rot Resistance Introgressed from the Wild Perennial Helianthus maximiliani into Cultivated Sunflower ( Helianthus annuus L.). Int J Mol Sci 2022; 23:ijms23147727. [PMID: 35887074 PMCID: PMC9321925 DOI: 10.3390/ijms23147727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/06/2022] [Accepted: 07/08/2022] [Indexed: 11/27/2022] Open
Abstract
Sclerotinia head rot (HR), caused by Sclerotinia sclerotiorum, is an economically important disease of sunflower with known detrimental effects on yield and quality in humid climates worldwide. The objective of this study was to gain insight into the genetic architecture of HR resistance from a sunflower line HR21 harboring HR resistance introgressed from the wild perennial Helianthus maximiliani. An F2 population derived from the cross of HA 234 (susceptible-line)/HR21 (resistant-line) was evaluated for HR resistance at two locations during 2019−2020. Highly significant genetic variations (p < 0.001) were observed for HR disease incidence (DI) and disease severity (DS) in both individual and combined analyses. Broad sense heritability (H2) estimates across environments for DI and DS were 0.51 and 0.62, respectively. A high-density genetic map of 1420.287 cM was constructed with 6315 SNP/InDel markers developed using genotype-by-sequencing technology. A total of 16 genomic regions on eight sunflower chromosomes, 1, 2, 10, 12, 13, 14, 16 and 17 were associated with HR resistance, each explaining between 3.97 to 16.67% of the phenotypic variance for HR resistance. Eleven of these QTL had resistance alleles from the HR21 parent. Molecular markers flanking the QTL will facilitate marker-assisted selection breeding for HR resistance in sunflower.
Collapse
Affiliation(s)
- Zahirul I. Talukder
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (Z.I.T.); (X.L.)
| | - William Underwood
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND 58102, USA; (W.U.); (C.G.M.); (G.J.S.)
| | - Christopher G. Misar
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND 58102, USA; (W.U.); (C.G.M.); (G.J.S.)
| | - Gerald J. Seiler
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND 58102, USA; (W.U.); (C.G.M.); (G.J.S.)
| | - Xiwen Cai
- USDA-Agricultural Research Service, Wheat, Sorghum and Forage Research Unit, 251 Filley Hall, 1625 Arbor Drive, Lincoln, NE 68583, USA;
| | - Xuehui Li
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA; (Z.I.T.); (X.L.)
| | - Lili Qi
- USDA-Agricultural Research Service, Edward T. Schafer Agricultural Research Center, 1616 Albrecht Blvd. N., Fargo, ND 58102, USA; (W.U.); (C.G.M.); (G.J.S.)
- Correspondence: ; Tel.: +1-701-239-1351
| |
Collapse
|