1
|
Liu Y, Ye J, Zhu M, Atkinson RG, Zhang Y, Zheng X, Lu J, Cao Z, Peng J, Shi C, Xie Z, Larkin RM, Nieuwenhuizen NJ, Ampomah-Dwamena C, Chen C, Wang R, Luo X, Cheng Y, Deng X, Zeng Y. Multi-omics analyses reveal the importance of chromoplast plastoglobules in carotenoid accumulation in citrus fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:924-943. [PMID: 37902994 DOI: 10.1111/tpj.16519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/11/2023] [Accepted: 10/17/2023] [Indexed: 11/01/2023]
Abstract
Chromoplasts act as a metabolic sink for carotenoids, in which plastoglobules serve as versatile lipoprotein particles. PGs in chloroplasts have been characterized. However, the features of PGs from non-photosynthetic plastids are poorly understood. We found that the development of chromoplast plastoglobules (CPGs) in globular and crystalloid chromoplasts of citrus is associated with alterations in carotenoid storage. Using Nycodenz density gradient ultracentrifugation, an efficient protocol for isolating highly purified CPGs from sweet orange (Citrus sinensis) pulp was established. Forty-four proteins were defined as likely comprise the core proteome of CPGs using comparative proteomics analysis. Lipidome analysis of different chromoplast microcompartments revealed that the nonpolar microenvironment within CPGs was modified by 35 triacylglycerides, two sitosterol esters, and one stigmasterol ester. Manipulation of the CPG-localized gene CsELT1 (esterase/lipase/thioesterase) in citrus calli resulted in increased lipids and carotenoids, which is further evidence that the nonpolar microenvironment of CPGs contributes to carotenoid accumulation and storage in the chromoplasts. This multi-feature analysis of CPGs sheds new light on the role of chromoplasts in carotenoid metabolism, paving the way for manipulating carotenoid content in citrus fruit and other crops.
Collapse
Affiliation(s)
- Yun Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiongjie Zheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jiao Lu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zhen Cao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Jun Peng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Chunmei Shi
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Zongzhou Xie
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Robert M Larkin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, 92169, Auckland, New Zealand
| | - Chuanwu Chen
- Guangxi Academy of Specialty Crops/Guangxi Engineering Research Center of Citrus Breeding and Culture, Guilin, 541004, P.R. China
| | - Rui Wang
- Shanghai Applied Protein Technology Co. Ltd, Shanghai, 200233, P.R. China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, P.R. China
| |
Collapse
|
2
|
Li R, Zeng Q, Zhang X, Jing J, Ge X, Zhao L, Yi B, Tu J, Fu T, Wen J, Shen J. Xanthophyll esterases in association with fibrillins control the stable storage of carotenoids in yellow flowers of rapeseed (Brassica juncea). THE NEW PHYTOLOGIST 2023; 240:285-301. [PMID: 37194444 DOI: 10.1111/nph.18970] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 04/20/2023] [Indexed: 05/18/2023]
Abstract
Biosynthesis, stabilization, and storage of carotenoids are vital processes in plants that collectively contribute to the vibrant colors observed in flowers and fruits. Despite its importance, the carotenoid storage pathway remains poorly understood and lacks thorough characterization. We identified two homologous genes, BjA02.PC1 and BjB04.PC2, belonging to the esterase/lipase/thioesterase (ELT) family of acyltransferases. We showed that BjPCs in association with fibrillin gene BjFBN1b control the stable storage of carotenoids in yellow flowers of Brassica juncea. Through genetic, high-resolution mass spectrometry and transmission electron microscopy analyses, we demonstrated that both BjA02.PC1 and BjB04.PC2 can promote the accumulation of esterified xanthophylls, facilitating the formation of carotenoid-enriched plastoglobules (PGs) and ultimately producing yellow pigments in flowers. The elimination of BjPCs led to the redirection of metabolic flux from xanthophyll ester biosynthesis to lipid biosynthesis, resulting in white flowers for B. juncea. Moreover, we genetically verified the function of two fibrillin genes, BjA01.FBN1b and BjB05.FBN1b, in mediating PG formation and demonstrated that xanthophyll esters must be deposited in PGs for stable storage. These findings identified a previously unknown carotenoid storage pathway that is regulated by BjPCs and BjFBN1b, while offering unique opportunities for improving the stability, deposition, and bioavailability of carotenoids.
Collapse
Affiliation(s)
- Rihui Li
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qinyu Zeng
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiangxiang Zhang
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jing Jing
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoyu Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lun Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxing Tu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Tingdong Fu
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jinxiong Shen
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
3
|
Li Y, Ran L, Mo T, Liu N, Zeng J, Liang A, Wang C, Suo Q, Chen Z, Wang Y, Fang N, Xu S, Xiao Y. Yellow Petal locus GaYP promotes flavonol biosynthesis and yellow coloration in petals of Asiatic cotton (Gossypium arboreum). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:98. [PMID: 37027050 DOI: 10.1007/s00122-023-04329-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/20/2023] [Indexed: 06/19/2023]
Abstract
Yellow Petal locus GaYP is located on chromosome 11 and encodes a Sg6 R2R3-MYB transcription factor, which promotes flavonol biosynthesis and yellow coloration in Asiatic cotton petals. Petal color is pivotal to ornamental value and reproduction of plants. Yellow coloration in plant petals is mainly attributed to colorants including carotenoids, aurones and some flavonols. To date, the genetic regulatory mechanism of flavonol biosynthesis in petals is still to be elucidated. Here, we employed Asiatic cottons with or without deep yellow coloration in petals to address this question. Multi-omic and biochemical analysis revealed significantly up-regulated transcription of flavonol structural genes and increased levels of flavonols, especially gossypetin and 6-hydroxykaempferol, in yellow petals of Asiatic cotton. Furthermore, the Yellow Petal gene (GaYP) was mapped on chromosome 11 by using a recombinant inbred line population. It was found that GaYP encoded a transcriptional factor belonging to Sg6 R2R3-MYB proteins. GaYP could bind to the promoter of flavonol synthase gene (GaFLS) and activate the transcription of downstream genes. Knocking out of GaYP or GaFLS homologs in upland cotton largely eliminated flavonol accumulation and pale yellow coloration in petals. Our results indicated that flavonol synthesis, up-regulated by the R2R3-MYB transcription activator GaYP, was the causative factor for yellow coloration of Asiatic cotton petals. In addition, knocking out of GaYP homologs also led to decrease in anthocyanin accumulation and petal size in upland cotton, suggesting that GaYP and its homologs might modulate developmental or physiological processes beyond flavonol biosynthesis.
Collapse
Affiliation(s)
- Yaohua Li
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Lingfang Ran
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Tong Mo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Nian Liu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Jianyan Zeng
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Aimin Liang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Chuannan Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Qingwei Suo
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Zhong Chen
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yi Wang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Nianjuan Fang
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Shijia Xu
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China
| | - Yuehua Xiao
- Biotechnology Research Center, Chongqing Key Laboratory of Application and Safety Control of Genetically Modified Crops, Southwest University, Beibei, Chongqing, China.
| |
Collapse
|
4
|
Shi L, Chang L, Yu Y, Zhang D, Zhao X, Wang W, Li P, Xin X, Zhang F, Yu S, Su T, Dong Y, Shi F. Recent Advancements and Biotechnological Implications of Carotenoid Metabolism of Brassica. PLANTS (BASEL, SWITZERLAND) 2023; 12:1117. [PMID: 36903976 PMCID: PMC10005552 DOI: 10.3390/plants12051117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Carotenoids were synthesized in the plant cells involved in photosynthesis and photo-protection. In humans, carotenoids are essential as dietary antioxidants and vitamin A precursors. Brassica crops are the major sources of nutritionally important dietary carotenoids. Recent studies have unraveled the major genetic components in the carotenoid metabolic pathway in Brassica, including the identification of key factors that directly participate or regulate carotenoid biosynthesis. However, recent genetic advances and the complexity of the mechanism and regulation of Brassica carotenoid accumulation have not been reviewed. Herein, we reviewed the recent progress regarding Brassica carotenoids from the perspective of forward genetics, discussed biotechnological implications and provided new perspectives on how to transfer the knowledge of carotenoid research in Brassica to the crop breeding process.
Collapse
Affiliation(s)
- Lichun Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Lin Chang
- Marine Science Research Institute of Shandong Province, Qingdao 266104, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing 100097, China
- National Engineering Research Center for Vegetables, Beijing 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yang Dong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, The Chinese Academy of Sciences, Beijing 100093, China
- China National Botanical Garden, Beijing 100093, China
| | - Fumei Shi
- School of Life Sciences, Liaocheng University, Liaocheng 252059, China
| |
Collapse
|
5
|
Cia Zeaxanthin Biosynthesis, OsZEP and OsVDE Regulate Striped Leaves Occurring in Response to Deep Transplanting of Rice. Int J Mol Sci 2022; 23:ijms23158340. [PMID: 35955477 PMCID: PMC9369140 DOI: 10.3390/ijms23158340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
The rice leaf color mutant B03S was previously generated from the photoperiod- and thermo-sensitive genic male sterile (PTGMS) rice line Efeng 1S, of which male sterility manifests by photoperiod and temperature but exhibits mainly temperature-sensitive characteristics. After these plants were deeply transplanted, the new leaves manifested typical zebra stripe patterns. Here, B03S was subjected to deep and shallow transplanting, shading with soil and aluminum foil, and control conditions in situ to determine the cause of the striped-leaf trait. The direct cause of striped leaves is the base of the leaf sheath being under darkness during deep transplanting, of which the critical shading range reached or exceeds 4 cm above the base. Moreover, typical striped leaves were analyzed based on the targeted metabolome method by ultra-performance liquid chromatography/tandem mass spectrometry (UPLC–MS/MS) combined with transcriptome and real-time quantitative PCR (qPCR)-based verification to clarify the metabolic pathways and transcriptional regulation involved. Carotenoids enter the xanthophyll cycle, and the metabolites that differentially accumulate in the striped leaves include zeaxanthin and its derivatives for photooxidative stress protection, driven by the upregulated expression of OsZEP. These findings improve the understanding of the physiological and metabolic mechanisms underlying the leaf color mutation in rice plants, enrich the theoretical foundation of the nonuniform leaf color phenomenon widely found in nature and highlight key advancements concerning rice production involving the transplanting of seedlings or direct broadcasting of seeds.
Collapse
|