1
|
Zhang R, Yang W, Pan Q, Zeng Q, Yan C, Bai X, Liu Y, Zhang L, Li B. Effects of long-term blue light irradiation on carotenoid biosynthesis and antioxidant activities in Chinese cabbage (Brassica rapa L. ssp. pekinensis). Food Res Int 2023; 174:113661. [PMID: 37981380 DOI: 10.1016/j.foodres.2023.113661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 10/29/2023] [Accepted: 11/03/2023] [Indexed: 11/21/2023]
Abstract
The aim of this study was to investigate the impact of long-term exposure to blue light-emitting diodes (LEDs) on the accumulation of indolic glucosinolates and carotenoids, as well as the plant growth and antioxidant activities in both orange and common Chinese cabbage (Brassica rapa L. ssp. pekinensis). Blue light treatment also induced higher ferric-reducing antioxidant power and 2,2-diphenyl-1-picrylhydrazyl by 20.66 % and 30.82 % and antioxidant enzyme activities catalase, peroxidase, superoxide dismutase, and the accumulation of non-enzymatic antioxidant substances (total phenols and total flavonoids) in the orange Chinese cabbage. Furthermore, long-term exposure to blue light had negative effects on the net photosynthetic rate and chlorophyll fluorescence levels. Meanwhile, blue light promoted accumulation of Indol-3-ylmethyl glucosinolate (I3M), β-carotene, lutein and zeaxanthin due to the high expression of regulatory and biosynthetic genes of the above metabolic pathways. In particular, lycopene and β-carotene content in orange Chinese cabbage increased by 60.14 % and 65.33 % compared to the ones in common line. The accumulation of carotenoid and increasing antioxidant levels in the orange cabbage line was influenced by long-term blue light irradiation, leading to better tolerance to low temperature and drought stresses. The up-regulation of transcription factors such as BrHY5-2, BrPIF4 and BrMYB12 may also contribute to the increased tolerance in orange Chinese cabbage to extreme environmental stresses. The BrHY5-2 gene could activate carotenoid biosynthetic genes and induce the accumulation of carotenoids. These findings suggested that long-term blue light irradiation could be a promising technique for increasing the nutrition value and enhancing tolerance to low temperature and drought stresses in Chinese cabbage.
Collapse
Affiliation(s)
- Ruixing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Wenjing Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qiming Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qi Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chengtai Yan
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Xue Bai
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yao Liu
- Life Science Research Core Services, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Lugang Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Baohua Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
2
|
Zhang Y, Mu D, Wang L, Wang X, Wilson IW, Chen W, Wang J, Liu Z, Qiu D, Tang Q. Reference Genes Screening and Gene Expression Patterns Analysis Involved in Gelsenicine Biosynthesis under Different Hormone Treatments in Gelsemium elegans. Int J Mol Sci 2023; 24:15973. [PMID: 37958955 PMCID: PMC10648913 DOI: 10.3390/ijms242115973] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023] Open
Abstract
Reverse transcription quantitative polymerase chain reaction (RT-qPCR) is an accurate method for quantifying gene expression levels. Choosing appropriate reference genes to normalize the data is essential for reducing errors. Gelsemium elegans is a highly poisonous but important medicinal plant used for analgesic and anti-swelling purposes. Gelsenicine is one of the vital active ingredients, and its biosynthesis pathway remains to be determined. In this study, G. elegans leaf tissue with and without the application of one of four hormones (SA, MeJA, ETH, and ABA) known to affect gelsenicine synthesis, was analyzed using ten candidate reference genes. The gene stability was evaluated using GeNorm, NormFinder, BestKeeper, ∆CT, and RefFinder. The results showed that the optimal stable reference genes varied among the different treatments and that at least two reference genes were required for accurate quantification. The expression patterns of 15 genes related to the gelsenicine upstream biosynthesis pathway was determined by RT-qPCR using the relevant reference genes identified. Three genes 8-HGO, LAMT, and STR, were found to have a strong correlation with the amount of gelsenicine measured in the different samples. This research is the first study to examine the reference genes of G. elegans under different hormone treatments and will be useful for future molecular analyses of this medically important plant species.
Collapse
Affiliation(s)
- Yao Zhang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Detian Mu
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Liya Wang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Xujun Wang
- Hunan Academy of Forestry, Changsha 410018, China
| | - Iain W. Wilson
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia;
| | - Wenqiang Chen
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| | - Jinghan Wang
- College of Forestry, Central South University of Forestry and Technology, Changsha 410004, China;
| | - Zhaoying Liu
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410128, China;
| | - Deyou Qiu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, China;
| | - Qi Tang
- College of Horticulture, National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha 410128, China; (Y.Z.); (D.M.); (L.W.); (W.C.)
| |
Collapse
|
3
|
Guo Y, Gong C, Cao B, Di T, Xu X, Dong J, Zhao K, Gao K, Su N. Blue Light Enhances Health-Promoting Sulforaphane Accumulation in Broccoli ( Brassica oleracea var. italica) Sprouts through Inhibiting Salicylic Acid Synthesis. PLANTS (BASEL, SWITZERLAND) 2023; 12:3151. [PMID: 37687397 PMCID: PMC10490093 DOI: 10.3390/plants12173151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/28/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023]
Abstract
As a vegetable with high nutritional value, broccoli (Brassica oleracea var. italica) is rich in vitamins, antioxidants and anti-cancer compounds. Glucosinolates (GLs) are one of the important functional components widely found in cruciferous vegetables, and their hydrolysate sulforaphane (SFN) plays a key function in the anti-cancer process. Herein, we revealed that blue light significantly induced the SFN content in broccoli sprouts, and salicylic acid (SA) was involved in this process. We investigated the molecular mechanisms of SFN accumulation with blue light treatment in broccoli sprouts and the relationship between SFN and SA. The results showed that the SFN accumulation in broccoli sprouts was significantly increased under blue light illumination, and the expression of SFN synthesis-related genes was particularly up-regulated by SA under blue light. Moreover, blue light considerably decreased the SA content compared with white light, and this decrease was more suppressed by paclobutrazol (Pac, an inhibitor of SA synthesis). In addition, the transcript level of SFN synthesis-related genes and the activity of myrosinase (MYR) paralleled the trend of SFN accumulation under blue light treatment. Overall, we concluded that SA participates in the SFN accumulation in broccoli sprouts under blue light.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Nana Su
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (Y.G.); (C.G.); (B.C.); (T.D.); (X.X.); (J.D.); (K.Z.); (K.G.)
| |
Collapse
|
4
|
Nagia M, Morgan I, Gamel MA, Farag MA. Maximizing the value of indole-3-carbinol, from its distribution in dietary sources, health effects, metabolism, extraction, and analysis in food and biofluids. Crit Rev Food Sci Nutr 2023; 64:8133-8154. [PMID: 37051943 DOI: 10.1080/10408398.2023.2197065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Indole-3-carbinol (I3C) is a major dietary component produced in Brassica vegetables from glucosinolates (GLS) upon herbivores' attack. The compound is gaining increasing interest due to its anticancer activity. However, reports about improving its level in plants or other sources are still rare. Unfortunately, I3C is unstable in acidic media and tends to polymerize rendering its extraction and detection challenging. This review presents a multifaceted overview of I3C regarding its natural occurrence, biosynthesis, isolation, and extraction procedure from dietary sources, and optimization for the best recovery yield. Further, an overview is presented on its metabolism and biotransformation inside the body to account for its health benefits and factors to ensure the best metabolic yield. Compile of the different analytical approaches for I3C analysis in dietary sources is presented for the first time, together with approaches for its detection and its metabolism in body fluids for proof of efficacy. Lastly, the chemopreventive effects of I3C and the underlying action mechanisms are summarized. Optimizing the yield and methods for the detection of I3C will assist for its incorporation as a nutraceutical or adjuvant in cancer treatment programs. Highlighting the complete biosynthetic pathway and factors involved in I3C production will aid for its future biotechnological production.
Collapse
Affiliation(s)
- Mohamed Nagia
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
- Department of Chemistry of Natural Compounds, Pharmaceutical and Drug Industries Research Institute, National Research Center, Cairo, Egypt
| | - Ibrahim Morgan
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Halle (Saale), Germany
| | - Mirette A Gamel
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mohamed A Farag
- Pharmacognosy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|