1
|
Tijjani SB, Qi J, Giri S, Lathrop R. Crop production and water quality under 1.5 °C and 2 °C warming: Plant responses and management options in the mid-Atlantic region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167874. [PMID: 37858825 DOI: 10.1016/j.scitotenv.2023.167874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/19/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
The 2015 "Paris Agreement" aims to limit the global average temperature rise to significantly less than 2 °C, preferably within 1.5 °C above pre-industrial levels. A multitude of studies have focused on evaluating how different sectors respond to such levels of warming. Nonetheless, most of these studies fail to provide a clear roadmap to mitigate these impacts. A case in point is the anticipated decline in corn and soybean yields and increased phosphorus (P) and nitrogen (N) discharge into water bodies, a trend linked to past agricultural practices and climate change. In this research, we employ a novel assessment of how existing management practices under 1.5 °C and 2 °C global warming (GW) scenarios can affect nutrient availability in time and space as well as crop yield in a typical agricultural watershed in the Mid-Atlantic Region, specifically the Upper Maurice River Watershed (UMRW) in New Jersey. Using the Soil and Water Assessment Tool (SWAT) with multiple Global Climate Model (GCM) projections, we found that compared to 1.5 °C, a 2 °C GW scenario would exacerbate runoff, leading to amplified nutrient leaching. These losses decrease nutrient availability during the crop growing season. Moreover, a mismatch between the timing of fertilizer application and crop nutrient absorption caused nutrient-related stress. This nutrient and anticipated temperature stress resulted in a more significant decrease in crop yields under the 2 °C GW scenario than the 1.5 °C scenario. We have designed a management scenario to reduce future nutrient losses while increasing crop yields. The strategy involves altering the timing of planting/harvesting and the fertilizer application rate in response to a warming climate. This approach is projected to increase corn and soybean yields by +39 % (+21 %) and +2 % (+17 %), respectively, under the 1.5 °C (2.0 °C) GW scenario for the RCP-4.5 pathway. Simultaneously, it is expected to decrease the N and P loads at 1.5 °C (2.0 °C) GW. Comparable projections are also observed under the RCP-8.5 pathway.
Collapse
Affiliation(s)
- Sadiya B Tijjani
- Department of Geography, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA.
| | - Junyu Qi
- Earth System Science Interdisciplinary Center, University of Maryland, College Park, 5825 University Research Ct, College Park, MD 20740, USA
| | - Subhasis Giri
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| | - Richard Lathrop
- Department of Ecology, Evolution, and Natural Resources, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Gou X, Reich PB, Qiu L, Shao M, Wei G, Wang J, Wei X. Leguminous plants significantly increase soil nitrogen cycling across global climates and ecosystem types. GLOBAL CHANGE BIOLOGY 2023; 29:4028-4043. [PMID: 37186000 DOI: 10.1111/gcb.16742] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Leguminous plants are an important component of terrestrial ecosystems and significantly increase soil nitrogen (N) cycling and availability, which affects productivity in most ecosystems. Clarifying whether the effects of legumes on N cycling vary with contrasting ecosystem types and climatic regions is crucial for understanding and predicting ecosystem processes, but these effects are currently unknown. By conducting a global meta-analysis, we revealed that legumes increased the soil net N mineralization rate (Rmin ) by 67%, which was greater than the recently reported increase associated with N deposition (25%). This effect was similar for tropical (53%) and temperate regions (81%) but was significantly greater in grasslands (151%) and forests (74%) than in croplands (-3%) and was greater in in situ incubation (101%) or short-term experiments (112%) than in laboratory incubation (55%) or long-term experiments (37%). Legumes significantly influenced the dependence of Rmin on N fertilization and experimental factors. The Rmin was significantly increased by N fertilization in the nonlegume soils, but not in the legume soils. In addition, the effects of mean annual temperature, soil nutrients and experimental duration on Rmin were smaller in the legume soils than in the nonlegume soils. Collectively, our results highlighted the significant positive effects of legumes on soil N cycling, and indicated that the effects of legumes should be elucidated when addressing the response of soils to plants.
Collapse
Affiliation(s)
- Xiaomei Gou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, Minnesota, USA
- Institute for Global Change Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Liping Qiu
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, China
| | - Mingan Shao
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, China
| | - Gehong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Jingjing Wang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaorong Wei
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
- Research Center of Soil and Water Conservation and Ecological Environment, Ministry of Education, Chinese Academy of Sciences, Yangling, China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi'an, Shaanxi, China
| |
Collapse
|