1
|
Li MY, Pei XX, Shi N, Yang YM, Fan ST, Sun YF, Kong QS, Duan CQ, Yu K, Wang J. Volatomic differences among Vitis amurensis cultivars and its hybrids with V. vinifera revealed the effects of genotype, region, and vintage on grape aroma. Food Res Int 2024; 191:114726. [PMID: 39059919 DOI: 10.1016/j.foodres.2024.114726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
Vitis amurensis grape, an East Asian Vitis species, has excellent cold and disease resistance and exhibits high winemaking potential. In this study, the aroma compounds in grapes from five V. amurensis cultivars ('Beiguohong', 'Beiguolan', 'Shuangfeng', 'Shuanghong', 'Shuangyou') and three interspecific hybrids ('Beibinghong', 'Xuelanhong', 'Zuoyouhong') from two regions (Zuojia and Ji'an, Jilin, China) were identified via HS-SPME-GC/MS. The results showed that V. amurensis grapes had a greater concentration of aroma compounds than the interspecific hybrid berries. 'Beibinghong' was relatively rich in terpenes, although their concentrations were all lower than the threshold. 'Shuangfeng' contained more concentrations of free C6/C9 compounds, alcohols, aromatics and aldehydes/ketones than the other cultivars. The aroma characteristics of 'Beiguolan' and 'Shuanghong' were relatively similar. The grapes from the lower temperature and more fertile soil of Zuojia contained more C6/C9 compounds, norisoprenoids and alcohols, while aromatics were more abundant in the grapes from Ji'an, which was warmer than the Zuojia region. Herbaceous, floral, fruity and sweet were the main aroma series of V. amurensis grapes. Our study could provide a reference for the development and utilization of V. amurensis grapes and lay a foundation for the development of wild grape cultivars and the production of wines with characteristic styles.
Collapse
Affiliation(s)
- Ming-Yu Li
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Xuan-Xuan Pei
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Ning Shi
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Yi-Ming Yang
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Shu-Tian Fan
- Institute of Special Animal and Plant Sciences of Chinese Academy of Agricultural Sciences, Changchun 130112, China
| | - Yan-Feng Sun
- Ji'an Ginseng Feature Industry Development Center, Ji'an 134200, China
| | - Qing-Sen Kong
- Ji'an Yajiang Valley Winery Co., Ltd., Ji'an 134202, China
| | - Chang-Qing Duan
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China
| | - Keji Yu
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| | - Jun Wang
- Center for Viticulture and Enology, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; Key Laboratory of Viticulture and Enology, Ministry of Agriculture and Rural Affairs, Beijing 100083, China.
| |
Collapse
|
2
|
Vinciguerra V, Di Martile M, Mollica Graziano M, Del Bufalo D, Garzoli S. LVI and DI-SPME Combined with GC/MS and GC/MS for Volatile Chemical Profile Investigation and Cytotoxic Power Evaluation of Essential Oil and Hydrolate from Cannabis sativa L. cv. Carmagnola. Molecules 2024; 29:3299. [PMID: 39064881 PMCID: PMC11280459 DOI: 10.3390/molecules29143299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
Cannabis sativa L. is a plant that has been cultivated since ancient times thanks to its various uses. Even its extraction products, such as essential oil and hydrolate, having a varied chemical composition and rich in bioactive components, find wide use in different sectors, gathering ever-increasing interest over time. In this work, the essential oil of Cannabis sativa L. cv. Carmagnola was characterized by using Gas Chromatography/Mass Spectrometry (GC/MS) and, for the first time, the chemical profile of the hydrolate was also described through different analytical techniques such as Large-Volume Injection Gas Chromatography/Mass Spectrometry (LVI-GC/MS) and Direct Immersion-Solid Phase Microextraction-Gas Chromatography/Mass spectrometry (DI-SPME-GC/MS), in order to provide a more complete compositional profile. The results of the analyses conducted on the hydrolate highlighted a high content of α-terpineol; on the other side, in the essential oil, a prevalence of monoterpenes, with α-pinene and limonene as the characterizing components, was detected. Both matrices were also investigated to evaluate their cytotoxic activity by using a panel of cancer cell lines derived from different histotypes such as melanoma (A375, LOX IMVI), non-small cell lung cancer (H1299, A549), colon (HT29) and pancreatic (L3.6) cancer cell lines. The obtained data demonstrated that essential oil was more effective than hydrolate in terms of reduction in cell viability.
Collapse
Affiliation(s)
- Vittorio Vinciguerra
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy; (V.V.); (M.M.G.)
| | - Marta Di Martile
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.D.M.); (D.D.B.)
| | - Monica Mollica Graziano
- Department for Innovation in Biological Systems, Food and Forestry, University of Tuscia, 01100 Viterbo, Italy; (V.V.); (M.M.G.)
| | - Donatella Del Bufalo
- Preclinical Models and New Therapeutic Agents Unit, IRCCS Regina Elena National Cancer Institute, 00144 Rome, Italy; (M.D.M.); (D.D.B.)
| | - Stefania Garzoli
- Department of Drug Chemistry and Technology, Sapienza University, 00185 Rome, Italy
| |
Collapse
|
3
|
Zhou Y, He W, He Y, Chen Q, Gao Y, Geng J, Zhu ZR. Formation of 8-hydroxylinalool in tea plant Camellia sinensis var. Assamica 'Hainan dayezhong'. FOOD CHEMISTRY. MOLECULAR SCIENCES 2023; 6:100173. [PMID: 37284067 PMCID: PMC10240414 DOI: 10.1016/j.fochms.2023.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/20/2023] [Accepted: 05/27/2023] [Indexed: 06/08/2023]
Abstract
Linalool and its derivatives contribute greatly to tea aroma. Here, 8-hydroxylinalool was found to be one of the major linalool-derived aroma compounds in Camellia sinensis var. assamica 'Hainan dayezhong', a tea plant grown in Hainan Province, China. Both (Z)-8-hydroxylinalool and (E)-8-hydroxylinalool were detected, and the E type was the main compound. Its content fluctuated in different months and was the highest in the buds compared with other tissues. CsCYP76B1 and CsCYP76T1, located in the endoplasmic reticulum, were identified to catalyze the formation of 8-hydroxylinalool from linalool in the tea plant. During withering of black tea manufacturing, the content of both (Z)-8-hydroxylinalool and (E)-8-hydroxylinalool significantly increased. Further study suggested that jasmonate induced gene expression of CsCYP76B1 and CsCYP76T1, and the accumulated precursor linalool may also contribute to 8-hydroxylinalool accumulation. Thus, this study not only reveals 8-hydroxylinalool biosynthesis in tea plants but also sheds light on aroma formation in black tea.
Collapse
Affiliation(s)
- Ying Zhou
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
| | - Wei He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Yunchuan He
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Qiulin Chen
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Yang Gao
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Jiamei Geng
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| | - Zeng-Rong Zhu
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- College of Agriculture and Biotechnology, Zhejiang University, Xihu District, Hangzhou 310030, China
| |
Collapse
|