1
|
Sultana MS, Niyikiza D, Hawk TE, Coffey N, Lopes-Caitar V, Pfotenhauer AC, El-Messidi H, Wyman C, Pantalone V, Hewezi T. Differential Transcriptome Reprogramming Induced by the Soybean Cyst Nematode Type 0 and Type 1.2.5.7 During Resistant and Susceptible Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2024; 37:828-840. [PMID: 39392447 DOI: 10.1094/mpmi-08-24-0092-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Soybean cyst nematode (SCN, Heterodera glycines [Hg]) is a serious root parasite of soybean (Glycine max) that induces extensive gene expression changes associated with pleiotropic biological activities in infected cells. However, the impacts of various SCN Hg types on host transcriptome reprogramming remain largely unknown. Here, we developed and used two recombinant inbred lines (RIL; RIL-72 and RIL-137) to profile transcriptome reprogramming in the infection sites during the resistant and susceptible interactions with SCN Hg Type 1.2.5.7 and Type 0. SCN bioassays indicated that RIL-72 was susceptible to Type 1.2.5.7 but resistant to Type 0, whereas RIL-137 was resistant to both types. Comparative analysis of gene expression changes induced by Type 1.2.5.7 in the resistant and susceptible lines revealed distinct transcriptome regulation with a number of similarly and oppositely regulated genes. The expression levels of similarly regulated genes in the susceptible line appeared to be insufficient to mount an effective defense against SCN. The functional importance of oppositely regulated genes was confirmed using virus-induced gene silencing (VIGS) and overexpression approaches. Further transcriptome comparisons revealed shared as well as Hg type- and genotype-specific transcriptome reprogramming. Shared transcriptome responses were mediated through common SCN-responsive genes and conserved immune signaling, whereas genotype-specific responses were derived from genetic variability, metabolic and hormonal differences, and varied regulation of protein phosphorylation and ubiquitination. The conserved defense mechanisms together with genotype-specific responses would enable plants to trigger effective and tailored immune responses to various Hg types and adapt the defense response to their genetic backgrounds. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Mst Shamira Sultana
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Daniel Niyikiza
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tracy E Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Nicole Coffey
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Valéria Lopes-Caitar
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Alexander C Pfotenhauer
- Center for Agricultural Synthetic Biology (CASB), University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Hana El-Messidi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Chris Wyman
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN 37996, U.S.A
| |
Collapse
|
2
|
Qin R, Huang M, Jiang Y, Jiang D, Chang D, Xie Y, Dou Y, Wu L, Wei L, Wang M, Tian Z, Li C, Wang C. N6-Methyladenosine (m6A) Sequencing Reveals Heterodera glycines-Induced Dynamic Methylation Promoting Soybean Defense. PHYTOPATHOLOGY 2024; 114:1612-1625. [PMID: 38478699 DOI: 10.1094/phyto-12-23-0474-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Unraveling the intricacies of soybean cyst nematode (Heterodera glycines) race 4 resistance and susceptibility in soybean breeding lines-11-452 (highly resistant) and Dongsheng1 (DS1, highly susceptible)-was the focal point of this study. Employing cutting-edge N6-methyladenosine (m6A) and RNA sequencing techniques, we delved into the impact of m6A modification on gene expression and plant defense responses. Through the evaluation of nematode development in both resistant and susceptible roots, a pivotal time point (3 days postinoculation) for m6A methylation sequencing was identified. Our sequencing data exhibited robust statistics, successful soybean genome mapping, and prevalent m6A peak distributions, primarily in the 3' untranslated region and stop codon regions. Analysis of differential methylation peaks and differentially expressed genes revealed distinctive patterns between resistant and susceptible genotypes. In the highly resistant line (11-452), key resistance and defense-associated genes displayed increased expression coupled with inhibited methylation, encompassing crucial players such as R genes, receptor kinases, and transcription factors. Conversely, the highly susceptible DS1 line exhibited heightened expression correlated with decreased methylation in genes linked to susceptibility pathways, including Mildew Locus O-like proteins and regulatory elements affecting defense mechanisms. Genome-wide assessments, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses, and differential methylation peak/differentially expressed gene overlap emphasized the intricate interplay of m6A modifications, alternative splicing, microRNA, and gene regulation in plant defense. Protein-protein interaction networks illuminated defense-pivotal genes, delineating divergent mechanisms in resistant and susceptible responses. This study sheds light on the dynamic correlation between methylation, splicing, and gene expression, providing profound insights into plant responses to nematode infection.
Collapse
Affiliation(s)
- Ruifeng Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Minghui Huang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Ye Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Dan Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Doudou Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Xie
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuewen Dou
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wu
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liuli Wei
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Mingze Wang
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Zhongyan Tian
- Heilongjiang Academy of Agricultural Sciences, Daqing 163316, Heilongjiang, China
| | - Chunjie Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| | - Congli Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, Heilongjiang, China
| |
Collapse
|
3
|
Li H, Liu J, Yuan X, Chen X, Cui X. Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of Glycine max to soybean mosaic virus. Front Microbiol 2023; 14:1241076. [PMID: 38033585 PMCID: PMC10687721 DOI: 10.3389/fmicb.2023.1241076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 09/22/2023] [Indexed: 12/02/2023] Open
Abstract
As a high-value oilseed crop, soybean [Glycine max (L.) Merr.] is limited by various biotic stresses during its growth and development. Soybean mosaic virus (SMV) is a devastating viral infection of soybean that primarily affects young leaves and causes significant production and economic losses; however, the synergistic molecular mechanisms underlying the soybean response to SMV are largely unknown. Therefore, we performed RNA sequencing on SMV-infected resistant and susceptible soybean lines to determine the molecular mechanism of resistance to SMV. When the clean reads were aligned to the G. max reference genome, a total of 36,260 genes were identified as expressed genes and used for further research. Most of the differentially expressed genes (DEGs) associated with resistance were found to be enriched in plant hormone signal transduction and circadian rhythm according to Kyoto Encyclopedia of Genes and Genomes analysis. In addition to salicylic acid and jasmonic acid, which are well known in plant disease resistance, abscisic acid, indole-3-acetic acid, and cytokinin are also involved in the immune response to SMV in soybean. Most of the Ca2+ signaling related DEGs enriched in plant-pathogen interaction negatively influence SMV resistance. Furthermore, the MAPK cascade was involved in either resistant or susceptible responses to SMV, depending on different downstream proteins. The phytochrome interacting factor-cryptochrome-R protein module and the MEKK3/MKK9/MPK7-WRKY33-CML/CDPK module were found to play essential roles in soybean response to SMV based on protein-protein interaction prediction. Our findings provide general insights into the molecular regulatory networks associated with soybean response to SMV and have the potential to improve legume resistance to viral infection.
Collapse
Affiliation(s)
- Han Li
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jinyang Liu
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xingxing Yuan
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xin Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoyan Cui
- Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
4
|
Jiang Y, Huang M, Qin R, Jiang D, Chang D, Xie Y, Li C, Wang C. Full-Length Transcriptome Analysis of Soybean Cyst Nematode ( Heterodera glycines) Reveals an Association of Behaviors in Response to Attractive pH and Salt Solutions with Activation of Transmembrane Receptors, Ion Channels, and Ca 2+ Transporters. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37267587 DOI: 10.1021/acs.jafc.3c00908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Soybean cyst nematode (Heterodera glycines Ichinohe), a devastating pathogen in soybean, was chosen as a model system to investigate nematode behavior and gene expression changes in response to acidic and basic pH and salt signals (pH 4.5, 5.25, 8.6, and 10 and NaCl) through full-length transcriptome sequencing of 18 samples. An average of 4.36 Gbp of clean reads per sample were generated, and 3972 novel genes and 29,529 novel transcripts were identified. Sequence structural variation during or after transcription may be associated with the nematode's behavioral response. The functional analysis of 1817/4962 differentially expressed genes/transcripts showed that signal transduction pathways, including transmembrane receptors, ion channels, and Ca2+ transporters, were activated, but pathways involved in nematode development (e.g., ribosome) and energy production (e.g., oxidative phosphorylation) were inhibited. A corresponding model was established. Our findings suggest that these receptors and ion channels might be potential targets for nematicides or drug discovery.
Collapse
Affiliation(s)
- Ye Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Minghui Huang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
| | - Ruifeng Qin
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dan Jiang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Doudou Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yifan Xie
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chunjie Li
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
| | - Congli Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, 150081 Heilongjiang, P. R. China
| |
Collapse
|
5
|
Ling J, Liu R, Hao Y, Li Y, Ping X, Yang Q, Yang Y, Lu X, Xie B, Zhao J, Mao Z. Comprehensive analysis of the WRKY gene family in Cucumis metuliferus and their expression profile in response to an early stage of root knot nematode infection. FRONTIERS IN PLANT SCIENCE 2023; 14:1143171. [PMID: 37021316 PMCID: PMC10067755 DOI: 10.3389/fpls.2023.1143171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Root-knot nematode (RKN) is a major factor that limits the growth and productivity of important Cucumis crops, such as cucumber and melon, which lack RKN-resistance genes in their genome. Cucumis metuliferus is a wild Cucumis species that displays a high degree of RKN-resistance. WRKY transcription factors were involved in plant response to biotic stresses. However, little is known on the function of WRKY genes in response to RKN infection in Cucumis crops. In this study, Cucumis metuliferus 60 WRKY genes (CmWRKY) were identified in the C. metuliferus genome, and their conserved domains were classified into three main groups based on multiple sequence alignment and phylogenetic analysis. Synteny analysis indicated that the WRKY genes were highly conserved in Cucumis crops. Transcriptome data from of C. metuliferus roots inoculated with RKN revealed that 16 CmWRKY genes showed differential expression, of which 13 genes were upregulated and three genes were downregulated, indicating that these CmWRKY genes are important to C. metuliferus response to RKN infection. Two differentially expression CmWRKY genes (CmWRKY10 and CmWRKY28) were selected for further functional analysis. Both CmWRKY genes were localized in nucleus, indicating they may play roles in transcriptional regulation. This study provides a foundation for further research on the function of CmWRKY genes in RKN stress resistance and elucidation of the regulatory mechanism.
Collapse
Affiliation(s)
- Jian Ling
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Liu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yali Hao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yan Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingxing Ping
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qihong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuhong Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaofei Lu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianlong Zhao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhenchuan Mao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|