1
|
Zhu M, Peng Y, Gao J, Ren R, Wan Y, Liu Y. Exploring the relationship between pollen viability and inclusion in Paeonia lactiflora after cryopreservation. Cryobiology 2024; 115:104867. [PMID: 38387753 DOI: 10.1016/j.cryobiol.2024.104867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 02/19/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
Pollen, as the male gametophyte, carries half of plant genetic information and is an important source of germplasm. The cryopreservation of pollen can not only preserve germplasm, but also solve the problem of time and space barrier in crossbreeding. So it is of great significance to explore the mechanism of pollen viability maintenance after cryopreservation. In this paper, 10 cultivars of Paeonia lactiflora with different fresh pollen viability that did not change after cryopreservation were taken as objects and the effects of pollen inclusions such as soluble sugar, starch, soluble protein, free amino acids, and proline were explored. The results showed that: (1) The contents of pollen inclusions in the fresh pollen of 10 cultivars were different. After cryopreservation, the contents of starch and free amino acids significantly decreased in 10 cultivars, and the soluble sugar, soluble protein, and proline varied with cultivars. (2) Correlation analysis showed that fresh pollen viability was significantly positively correlated with the soluble sugar (R-values of 0.630) and starch content (R-values of 0.694) in fresh pollen. But after cryopreservation pollen viability was only significantly positively correlated with the starch content (R-values of 0.725). These results suggest that the effects of pollen inclusions on pollen vitality are different before and after cryopreservation. The fresh pollen with higher soluble sugar and starch is more vital. But after cryopreservation, the pollen with high starch content has higher viability. The maintenance of stable pollen viability after cryopreservation appears to be related to starch content or starch metabolism, which requires further to study for a final determination.
Collapse
Affiliation(s)
- Mengting Zhu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| | - Ying Peng
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| | - Jianzhou Gao
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| | - Ruifen Ren
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| | - Yingling Wan
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| | - Yan Liu
- School of Landscape Architecture, Beijing Forestry University, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Beijing, 100083, China.
| |
Collapse
|
2
|
Cai Y, Abla M, Gao L, Wu J, Yang L. Research on Phenolic Content and Its Antioxidant Activities in Fermented Rosa rugosa 'Dianhong' Petals with Brown Sugar. Antioxidants (Basel) 2024; 13:607. [PMID: 38790712 PMCID: PMC11117507 DOI: 10.3390/antiox13050607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/01/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Fermented Rosa rugosa 'Dianhong' petals with brown sugar, a biologically active food popularized in Dali Prefecture, Northwest Yunnan, China, are rich in bioactive compounds, especially polyphenols, exhibiting strong antioxidant activity. This study evaluated their antioxidant activities, total phenolic contents, and concentrations of polyphenols at different fermentation conditions using different assays: DPPH free-radical scavenging activity, Trolox equivalent antioxidant capacity (TEAC), ferric reducing antioxidant power (FRAP), Folin-Ciocalteu assays, and HPLC-MS/MS and HPLC-DAD methods. The results indicated that fermentation significantly increased (p < 0.05) the antioxidant activity and polyphenol concentration of R. rugosa 'Dianhong'. Furthermore, Saccharomyces rouxii TFR-1 fermentation achieved optimal bioactivity earlier than natural fermentation. Overall, we found that the use of Saccharomyces rouxii (TFR-1) is a more effective strategy for the production of polyphenol-rich fermented R. rugosa 'Dianhong' petals with brown sugar compared to natural fermentation.
Collapse
Affiliation(s)
- Yueyue Cai
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Merhaba Abla
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Lu Gao
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
| | - Jinsong Wu
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
| | - Lixin Yang
- School of Ethnic Medicine, Yunnan Minzu University, Kunming 650504, China; (Y.C.); (L.G.)
- Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China;
- Center for Biodiversity and Indigenous Knowledge, Kunming 650034, China
| |
Collapse
|
3
|
Wang X, Chen J, Luo D, Ba L. Advances in the Understanding of Postharvest Physiological Changes and the Storage and Preservation of Pitaya. Foods 2024; 13:1307. [PMID: 38731681 PMCID: PMC11083964 DOI: 10.3390/foods13091307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
Highly prized for its unique taste and appearance, pitaya is a tasty, low-calorie fruit. It has a high-water content, a high metabolism, and a high susceptibility to pathogens, resulting in an irreversible process of tissue degeneration or quality degradation and eventual loss of commercial value, leading to economic loss. High quality fruits are a key guarantee for the healthy development of economic advantages. However, the understanding of postharvest conservation technology and the regulation of maturation, and senescence of pitaya are lacking. To better understand the means of postharvest storage of pitaya, extend the shelf life of pitaya fruit and prospect the postharvest storage technology, this paper analyzes and compares the postharvest quality changes of pitaya fruit, preservation technology, and senescence regulation mechanisms. This study provides research directions for the development of postharvest storage and preservation technology.
Collapse
Affiliation(s)
- Xiaogang Wang
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China;
| | - Jianye Chen
- College of Horticultural Science, South China Agricultural University, Guangzhou 510642, China;
| | - Donglan Luo
- School of Biological and Environmental Engineering, Guiyang University, Guiyang 550005, China;
| | - Liangjie Ba
- College of Food Science and Engineering, Guiyang University, Guiyang 550005, China;
| |
Collapse
|